IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v54y2016i6p1863-1885.html
   My bibliography  Save this article

A Markov chain model of military personnel dynamics

Author

Listed:
  • Mark Zais
  • Dan Zhang

Abstract

Personnel retention is one of the most significant challenges faced by the US Army. Central to the problem is understanding the incentives of the stay-or-leave decision for military personnel. Using three years of data from the US Department of Defense, we construct and estimate a Markov chain model of military personnel. Unlike traditional classification approaches, such as logistic regression models, the Markov chain model allows us to describe military personnel dynamics over time and answer a number of managerially relevant questions. Building on the Markov chain model, we construct a finite-horizon stochastic dynamic programming model to study the monetary incentives of stay-or-leave decisions. The dynamic programming model computes the expected pay-off of staying versus leaving at different stages of the career of military personnel, depending on employment opportunities in the civilian sector. We show that the stay-or-leave decisions from the dynamic programming model possess surprisingly strong predictive power, without requiring personal characteristics that are typically employed in classification approaches. Furthermore, the results of the dynamic programming model can be used as an input in classification methods and lead to more accurate predictions. Overall, our work presents an interesting alternative to classification methods and paves the way for further investigations on personnel retention incentives.

Suggested Citation

  • Mark Zais & Dan Zhang, 2016. "A Markov chain model of military personnel dynamics," International Journal of Production Research, Taylor & Francis Journals, vol. 54(6), pages 1863-1885, March.
  • Handle: RePEc:taf:tprsxx:v:54:y:2016:i:6:p:1863-1885
    DOI: 10.1080/00207543.2015.1108533
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2015.1108533
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2015.1108533?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Turan, Hasan Hüseyin & Jalalvand, Fatemeh & Elsawah, Sondoss & Ryan, Michael J., 2022. "A joint problem of strategic workforce planning and fleet renewal: With an application in defense," European Journal of Operational Research, Elsevier, vol. 296(2), pages 615-634.
    2. Rempel, M. & Cai, J., 2021. "A review of approximate dynamic programming applications within military operations research," Operations Research Perspectives, Elsevier, vol. 8(C).
    3. Jingbo Huang & Jiting Li & Yonghao Du & Yanjie Song & Jian Wu & Feng Yao & Pei Wang, 2023. "Research of a Multi-Level Organization Human Resource Network Optimization Model and an Improved Late Acceptance Hill Climbing Algorithm," Mathematics, MDPI, vol. 11(23), pages 1-19, November.
    4. Oussama Mazari-Abdessameud & Filip Van Utterbeeck & Guy Van Acker & Marie-Anne Guerry, 2020. "Multidimensional military manpower planning based on a career path approach," Operations Management Research, Springer, vol. 13(3), pages 249-263, December.
    5. Leo MacDonald & Jomon Aliyas Paul, 2024. "A risk analytics model for strategic workforce planning: readiness of enlisted military personnel," Annals of Operations Research, Springer, vol. 338(1), pages 513-533, July.
    6. Georgiou, Andreas C. & Thanassoulis, Emmanuel & Papadopoulou, Alexandra, 2022. "Using data envelopment analysis in markovian decision making," European Journal of Operational Research, Elsevier, vol. 298(1), pages 276-292.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:54:y:2016:i:6:p:1863-1885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.