IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i9p2141-d1138520.html
   My bibliography  Save this article

Network DEA and Its Applications (2017–2022): A Systematic Literature Review

Author

Listed:
  • Svetlana V. Ratner

    (Department of Economic and Mathematical Modelling, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., 117198 Moscow, Russia
    Economic Dynamics and Innovation Management Laboratory, V.A. Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 65 Profsoyuznaya St., 117997 Moscow, Russia)

  • Artem M. Shaposhnikov

    (Department of Economic and Mathematical Modelling, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., 117198 Moscow, Russia
    Graduate School of Corporate Management, Russian Presidential Academy of National Economy and Public Administration, 82 Prospekt Vernadskogo, Bldgs. 4,5, 119571 Moscow, Russia)

  • Andrey V. Lychev

    (College of Information Technologies and Computer Sciences, National University of Science and Technology “MISIS”, 4 Leninsky Ave., Bldg. 1, 119049 Moscow, Russia)

Abstract

Data Envelopment Analysis (DEA) is one of the fastest growing approaches to solving management problems for the multi-criteria evaluation of the efficiency of homogeneous production systems. The general trend in recent years has been the development of network DEA (NDEA) models, which can consider the complicated structure of Decision Making Units (DMUs) and, therefore, can be more informative from the point of view of management science than traditional DEA models. The aim of this study is the systematization and clarification of general trends in the development of NDEA applications over the past 6 years (2017–2022). This study uses the methodology of a systematic literature review, which includes the analysis of the dynamics of the development of the topic, the selection of the main clusters of publications according to formal (citation, branches of knowledge, individual researchers) and informal (topics) criteria, and the analysis of their content. This review reveals that, most frequently, network structures are used for bank models, supply chain models, models of eco-efficiency of complex production systems, models of innovation processes, and models of universities or their departments and healthcare systems. Two-stage models, where the outputs of the first stage are the inputs of the second (intermediate outputs), are the most commonly used. However, in recent years, there has been a noticeable tendency to complicate DEA models and introduce hierarchical structures into them.

Suggested Citation

  • Svetlana V. Ratner & Artem M. Shaposhnikov & Andrey V. Lychev, 2023. "Network DEA and Its Applications (2017–2022): A Systematic Literature Review," Mathematics, MDPI, vol. 11(9), pages 1-24, May.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2141-:d:1138520
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/9/2141/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/9/2141/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammad Amirkhan & Hosein Didehkhani & Kaveh Khalili-Damghani & Ashkan Hafezalkotob, 2018. "Measuring Performance of a Three-Stage Network Structure Using Data Envelopment Analysis and Nash Bargaining Game: A Supply Chain Application," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(05), pages 1429-1467, September.
    2. Wei-Hsin Kong & Tsu-Tan Fu & Ming-Miin Yu, 2017. "Evaluating Taiwanese Bank Efficiency Using the Two-Stage Range DEA Model," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1043-1068, July.
    3. Kiani Mavi, Reza & Saen, Reza Farzipoor & Goh, Mark, 2019. "Joint analysis of eco-efficiency and eco-innovation with common weights in two-stage network DEA: A big data approach," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 553-562.
    4. Mahsa Pishdar & Masoumeh Danesh Shakib & Jurgita Antucheviciene & Arvydas Vilkonis, 2021. "Interval Type-2 Fuzzy Super SBM Network DEA for Assessing Sustainability Performance of Third-Party Logistics Service Providers Considering Circular Economy Strategies in the Era of Industry 4.0," Sustainability, MDPI, vol. 13(11), pages 1-18, June.
    5. Tajbakhsh, Alireza & Hassini, Elkafi, 2018. "Evaluating sustainability performance in fossil-fuel power plants using a two-stage data envelopment analysis," Energy Economics, Elsevier, vol. 74(C), pages 154-178.
    6. Xiao Shi & Yongjun Li & Ali Emrouznejad & Jianhui Xie & Liang Liang, 2017. "Estimation of potential gains from bank mergers: A novel two-stage cost efficiency DEA model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(9), pages 1045-1055, September.
    7. Zhou, Xiaoyang & Xu, Zhongwen & Chai, Jian & Yao, Liming & Wang, Shouyang & Lev, Benjamin, 2019. "Efficiency evaluation for banking systems under uncertainty: A multi-period three-stage DEA model," Omega, Elsevier, vol. 85(C), pages 68-82.
    8. Chu, Junfei & Zhu, Joe, 2021. "Production scale-based two-stage network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 294(1), pages 283-294.
    9. Iftikhar, Yaser & Wang, Zhaohua & Zhang, Bin & Wang, Bo, 2018. "Energy and CO2 emissions efficiency of major economies: A network DEA approach," Energy, Elsevier, vol. 147(C), pages 197-207.
    10. John S. Liu & Louis Y. Y. Lu & Wen-Min Lu, 2016. "Research Fronts and Prevailing Applications in Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Joe Zhu (ed.), Data Envelopment Analysis, chapter 0, pages 543-574, Springer.
    11. Wang, Ya & Pan, Jiao-feng & Pei, Rui-min & Yi, Bo-Wen & Yang, Guo-liang, 2020. "Assessing the technological innovation efficiency of China's high-tech industries with a two-stage network DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    12. Manuel Mocholi-Arce & Ramon Sala-Garrido & Maria Molinos-Senante & Alexandros Maziotis, 2022. "Measuring the eco-efficiency of the provision of drinking water by two-stage network data envelopment analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 12883-12899, November.
    13. Yong Tan & Peter Wanke & Jorge Antunes & Ali Emrouznejad, 2021. "Unveiling endogeneity between competition and efficiency in Chinese banks: a two-stage network DEA and regression analysis," Annals of Operations Research, Springer, vol. 306(1), pages 131-171, November.
    14. Bo Hsiao & Li-Hsueh Chen, 2019. "Performance Evaluation for Taiwanese Hospitals by Multi-Activity Network Data Envelopment Analysis," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 1009-1043, May.
    15. Chiang Kao, 2014. "Efficiency Decomposition in Network Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 55-77, Springer.
    16. Yu Shi & Anyu Yu & Huong Ngo Higgins & Joe Zhu, 2021. "Shared and unsplittable performance links in network DEA," Annals of Operations Research, Springer, vol. 303(1), pages 507-528, August.
    17. Hadi Moheb-Alizadeh & Robert Handfield, 2018. "An integrated chance-constrained stochastic model for efficient and sustainable supplier selection and order allocation," International Journal of Production Research, Taylor & Francis Journals, vol. 56(21), pages 6890-6916, November.
    18. Zhang, Ruchuan & Wei, Qian & Li, Aijun & Ren, LiYing, 2022. "Measuring efficiency and technology inequality of China's electricity generation and transmission system: A new approach of network Data Envelopment Analysis prospect cross-efficiency models," Energy, Elsevier, vol. 246(C).
    19. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    20. Yu, Anyu & Shi, Yu & You, Jianxin & Zhu, Joe, 2021. "Innovation performance evaluation for high-tech companies using a dynamic network data envelopment analysis approach," European Journal of Operational Research, Elsevier, vol. 292(1), pages 199-212.
    21. Haitao Li & Jie Xiong & Jianhui Xie & Zhongbao Zhou & Jinlong Zhang, 2019. "A Unified Approach to Efficiency Decomposition for a Two-Stage Network DEA Model with Application of Performance Evaluation in Banks and Sustainable Product Design," Sustainability, MDPI, vol. 11(16), pages 1-18, August.
    22. Dao Le Trang Anh & Christopher Gan, 2020. "Profitability and marketability efficiencies of Vietnam manufacturing firms," International Journal of Social Economics, Emerald Group Publishing Limited, vol. 47(1), pages 54-71, January.
    23. Xiao Shi & Yongjun Li & Ali Emrouznejad & Jianhui Xie & Liang Liang, 2017. "Erratum to: Estimation of potential gains from bank mergers: A novel two-stage cost efficiency DEA model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(8), pages 983-983, August.
    24. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    25. Zhongmin Liu & Jia Lyu, 2020. "Measuring the innovation efficiency of the Chinese pharmaceutical industry based on a dynamic network DEA model," Applied Economics Letters, Taylor & Francis Journals, vol. 27(1), pages 35-40, January.
    26. W. Cooper & L. Seiford & K. Tone & J. Zhu, 2007. "Some models and measures for evaluating performances with DEA: past accomplishments and future prospects," Journal of Productivity Analysis, Springer, vol. 28(3), pages 151-163, December.
    27. Kaoru Tone & Miki Tsutsui, 2014. "Slacks-Based Network DEA," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 231-259, Springer.
    28. Simona Cohen-Kadosh & Zilla Sinuany-Stern, 2020. "Hip fracture surgery efficiency in Israeli hospitals via a network data envelopment analysis," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 251-277, March.
    29. Zhao, Jiqiang & Wu, Xianhua & Guo, Ji & Gao, Chao, 2022. "Allocation of SO2 emission rights in city agglomerations considering cross-border transmission of pollutants: A new network DEA model," Applied Energy, Elsevier, vol. 325(C).
    30. Fukuyama, Hirofumi & Matousek, Roman, 2017. "Modelling bank performance: A network DEA approach," European Journal of Operational Research, Elsevier, vol. 259(2), pages 721-732.
    31. Zhang, Lin & Zhao, Linlin & Zha, Yong, 2021. "Efficiency evaluation of Chinese regional industrial systems using a dynamic two-stage DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    32. Chien Wang & Ram Gopal & Stanley Zionts, 1997. "Use of Data Envelopment Analysis in assessing Information Technology impact on firm performance," Annals of Operations Research, Springer, vol. 73(0), pages 191-213, October.
    33. Chen, Yao & Cook, Wade D. & Kao, Chiang & Zhu, Joe, 2013. "Network DEA pitfalls: Divisional efficiency and frontier projection under general network structures," European Journal of Operational Research, Elsevier, vol. 226(3), pages 507-515.
    34. Santos Arteaga, Francisco J. & Tavana, Madjid & Di Caprio, Debora & Toloo, Mehdi, 2019. "A dynamic multi-stage slacks-based measure data envelopment analysis model with knowledge accumulation and technological evolution," European Journal of Operational Research, Elsevier, vol. 278(2), pages 448-462.
    35. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    36. Tavares, Rafael Santos & Angulo-Meza, Lidia & Sant'Anna, Annibal Parracho, 2021. "A proposed multistage evaluation approach for Higher Education Institutions based on network Data envelopment analysis: A Brazilian experience," Evaluation and Program Planning, Elsevier, vol. 89(C).
    37. Negar Roghaee & Emran Mohammadi & Nilofar Varzgani, 2020. "Performance evaluation and ranking of electricity companies using fuzzy network data envelopment analysis: a case study of Iranian regional electricity organisations," International Journal of Management and Decision Making, Inderscience Enterprises Ltd, vol. 19(4), pages 450-472.
    38. Li, Haitao & Chen, Chialin & Cook, Wade D. & Zhang, Jinlong & Zhu, Joe, 2018. "Two-stage network DEA: Who is the leader?," Omega, Elsevier, vol. 74(C), pages 15-19.
    39. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    40. Khushalani, Jaya & Ozcan, Yasar A., 2017. "Are hospitals producing quality care efficiently? An analysis using Dynamic Network Data Envelopment Analysis (DEA)," Socio-Economic Planning Sciences, Elsevier, vol. 60(C), pages 15-23.
    41. Chen, Kun & Zhu, Joe, 2017. "Second order cone programming approach to two-stage network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 262(1), pages 231-238.
    42. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    43. Sourour Ramzi, 2019. "Modeling the Education Supply Chain with Network DEA Model: The Case of Tunisia," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(3), pages 525-540, September.
    44. Mahmoudabadi, Mohammad Zarei & Emrouznejad, Ali, 2019. "Comprehensive performance evaluation of banking branches: A three-stage slacks-based measure (SBM) data envelopment analysis," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 359-376.
    45. Kao, Chiang, 2015. "Efficiency measurement for hierarchical network systems," Omega, Elsevier, vol. 51(C), pages 121-127.
    46. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "Data envelopment analysis 1978–2010: A citation-based literature survey," Omega, Elsevier, vol. 41(1), pages 3-15.
    47. Zhang, Linyan & Chen, Kun, 2019. "Hierarchical network systems: An application to high-technology industry in China," Omega, Elsevier, vol. 82(C), pages 118-131.
    48. Carolyn-Dung T. T. Tran & Renato A. Villano, 2021. "Financial Efficiency Of Tertiary Education Institutions: A Second-Stage Dynamic Network Data Envelopment Analysis Method," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 66(05), pages 1421-1442, September.
    49. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    50. Emrouznejad, Ali & Parker, Barnett R. & Tavares, Gabriel, 2008. "Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEA," Socio-Economic Planning Sciences, Elsevier, vol. 42(3), pages 151-157, September.
    51. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2007. "Data Envelopment Analysis," Springer Books, Springer, edition 0, number 978-0-387-45283-8, July.
    52. Saeedi, Hamid & Behdani, Behzad & Wiegmans, Bart & Zuidwijk, Rob, 2019. "Assessing the technical efficiency of intermodal freight transport chains using a modified network DEA approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 66-86.
    53. Xionghe Qin & Debin Du & Mei-Po Kwan, 2019. "Spatial spillovers and value chain spillovers: evaluating regional R&D efficiency and its spillover effects in China," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 721-747, May.
    54. Yantuan Yu & Jianhuan Huang & Yanmin Shao, 2019. "The Sustainability Performance of Chinese Banks: A New Network Data Envelopment Analysis Approach and Panel Regression," Sustainability, MDPI, vol. 11(6), pages 1-25, March.
    55. Kraude, Richard & Narayanan, Sriram & Talluri, Srinivas, 2022. "Evaluating the performance of supply chain risk mitigation strategies using network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1168-1182.
    56. Sajad Akbari & Jafar Heydari & Mohammad Ali Keramati & Abbas Keramati, 2020. "A mixed system of network data envelopment analysis to evaluate the performance of bank branches: an illustration with Iranian banks," International Journal of Business Excellence, Inderscience Enterprises Ltd, vol. 22(2), pages 198-212.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrey V. Lychev & Svetlana V. Ratner & Vladimir E. Krivonozhko, 2023. "Two-Stage Data Envelopment Analysis Models with Negative System Outputs for the Efficiency Evaluation of Government Financial Policies," Mathematics, MDPI, vol. 11(24), pages 1-21, December.
    2. Raul Moragues & Juan Aparicio & Miriam Esteve, 2023. "Ranking the Importance of Variables in a Nonparametric Frontier Analysis Using Unsupervised Machine Learning Techniques," Mathematics, MDPI, vol. 11(11), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    2. Zhang, Linyan & Chen, Kun, 2019. "Hierarchical network systems: An application to high-technology industry in China," Omega, Elsevier, vol. 82(C), pages 118-131.
    3. Kao, Chiang, 2020. "Decomposition of slacks-based efficiency measures in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 283(2), pages 588-600.
    4. Joe Zhu, 2022. "DEA under big data: data enabled analytics and network data envelopment analysis," Annals of Operations Research, Springer, vol. 309(2), pages 761-783, February.
    5. Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.
    6. Ming-Fu Hsu & Ying-Shao Hsin & Fu-Jiing Shiue, 2022. "Business analytics for corporate risk management and performance improvement," Annals of Operations Research, Springer, vol. 315(2), pages 629-669, August.
    7. Kremantzis, Marios Dominikos & Beullens, Patrick & Kyrgiakos, Leonidas Sotirios & Klein, Jonathan, 2022. "Measurement and evaluation of multi-function parallel network hierarchical DEA systems," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    8. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "A survey of DEA applications," Omega, Elsevier, vol. 41(5), pages 893-902.
    9. Chen, Ya & Li, Yongjun & Liang, Liang & Salo, Ahti & Wu, Huaqing, 2016. "Frontier projection and efficiency decomposition in two-stage processes with slacks-based measures," European Journal of Operational Research, Elsevier, vol. 250(2), pages 543-554.
    10. Huaqing Wu & Jingyu Yang & Wensheng Wu & Ya Chen, 2023. "Interest rate liberalization and bank efficiency: A DEA analysis of Chinese commercial banks," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 467-498, June.
    11. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    12. Mergoni, Anna & Soncin, Mara & Agasisti, Tommaso, 2023. "The effect of ICT on schools’ efficiency: Empirical evidence on 23 European countries," Omega, Elsevier, vol. 119(C).
    13. Camanho, Ana Santos & Silva, Maria Conceicao & Piran, Fabio Sartori & Lacerda, Daniel Pacheco, 2024. "A literature review of economic efficiency assessments using Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 315(1), pages 1-18.
    14. Mirdehghan, S. Morteza & Fukuyama, Hirofumi, 2016. "Pareto–Koopmans efficiency and network DEA," Omega, Elsevier, vol. 61(C), pages 78-88.
    15. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    16. Georgiou, Andreas C. & Thanassoulis, Emmanuel & Papadopoulou, Alexandra, 2022. "Using data envelopment analysis in markovian decision making," European Journal of Operational Research, Elsevier, vol. 298(1), pages 276-292.
    17. Utsav Pandey & Sanjeet Singh, 2022. "Data envelopment analysis in hierarchical category structure with fuzzy boundaries," Annals of Operations Research, Springer, vol. 315(2), pages 1517-1549, August.
    18. See, Kok Fong & Md Hamzah, Nurhafiza & Yu, Ming-Miin, 2021. "Metafrontier efficiency analysis for hospital pharmacy services using dynamic network DEA framework," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    19. Qingyou Yan & Fei Zhao & Xu Wang & Guoliang Yang & Tomas Baležentis & Dalia Streimikiene, 2019. "The network data envelopment analysis models for non-homogenous decision making units based on the sun network structure," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(4), pages 1221-1244, December.
    20. Sepideh Kaffash & Marianna Marra, 2017. "Data envelopment analysis in financial services: a citations network analysis of banks, insurance companies and money market funds," Annals of Operations Research, Springer, vol. 253(1), pages 307-344, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2141-:d:1138520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.