IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v295y2021i1p261-274.html
   My bibliography  Save this article

Negotiation mechanisms for the multi-agent multi-mode resource investment problem

Author

Listed:
  • Fink, Andreas
  • Gerhards, Patrick

Abstract

Carrying out complex projects often involves several collaborating parties (agents) with conflicting goals. We consider project scheduling problems, where each activity belongs to one of several agents, with a given deadline on the project completion while one aims at a schedule with an efficient use of resources. As there are precedence relations among activities and the activity execution requires varying amounts of resources, the need for coordination among the agents arises. For the execution of activities, an agent can choose from several modes that determine the processing time and resource usage. Each agent aims to minimise his/her individual resource costs associated with the project. Hence, the problem at hand is the multi-agent generalisation of the multi-mode resource investment problem. Here, we consider local as well as global resources. The latter ones are shared among the agents, thus the problem involves the need for a suitable allocation of respective resource costs. As agents are unwilling to share critical and sensitive information (or are not expected to always provide truthful information), the employed solution procedure should not rely on such information under consideration of the agents’ incentives. We propose and extend such decentralised negotiation mechanisms which facilitate the allocation of global resources. We analyse their potential to overcome information asymmetry and yield high quality solutions utilising a distributed scheduling procedure and a representation which aids in learning effective mode decisions.

Suggested Citation

  • Fink, Andreas & Gerhards, Patrick, 2021. "Negotiation mechanisms for the multi-agent multi-mode resource investment problem," European Journal of Operational Research, Elsevier, vol. 295(1), pages 261-274.
  • Handle: RePEc:eee:ejores:v:295:y:2021:i:1:p:261-274
    DOI: 10.1016/j.ejor.2021.02.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721001168
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.02.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Emerson, 2013. "The original Borda count and partial voting," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(2), pages 353-358, February.
    2. Mark Klein & Peyman Faratin & Hiroki Sayama & Yaneer Bar-Yam, 2003. "Negotiating Complex Contracts," Group Decision and Negotiation, Springer, vol. 12(2), pages 111-125, March.
    3. Feifei Li & Zhe Xu, 2018. "A multi-agent system for distributed multi-project scheduling with two-stage decomposition," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-24, October.
    4. Patrick Gerhards, 2020. "The multi-mode resource investment problem: a benchmark library and a computational study of lower and upper bounds," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 901-933, December.
    5. Homberger, Jörg & Fink, Andreas, 2017. "Generic negotiation mechanisms with side payments – Design, analysis and application for decentralized resource-constrained multi-project scheduling problems," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1001-1012.
    6. López-Ibáñez, Manuel & Dubois-Lacoste, Jérémie & Pérez Cáceres, Leslie & Birattari, Mauro & Stützle, Thomas, 2016. "The irace package: Iterated racing for automatic algorithm configuration," Operations Research Perspectives, Elsevier, vol. 3(C), pages 43-58.
    7. C-C Hsu & D S Kim, 2005. "A new heuristic for the multi-mode resource investment problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(4), pages 406-413, April.
    8. Adhau, Sunil & Mittal, M.L. & Mittal, Abhinav, 2013. "A multi-agent system for decentralized multi-project scheduling with resource transfers," International Journal of Production Economics, Elsevier, vol. 146(2), pages 646-661.
    9. Giuseppe Confessore & Stefano Giordani & Silvia Rismondo, 2007. "A market-based multi-agent system model for decentralized multi-project scheduling," Annals of Operations Research, Springer, vol. 150(1), pages 115-135, March.
    10. Ho, William & Xu, Xiaowei & Dey, Prasanta K., 2010. "Multi-criteria decision making approaches for supplier evaluation and selection: A literature review," European Journal of Operational Research, Elsevier, vol. 202(1), pages 16-24, April.
    11. Margaretha Gansterer & Richard F. Hartl, 2020. "The collaborative multi-level lot-sizing problem with cost synergies," International Journal of Production Research, Taylor & Francis Journals, vol. 58(2), pages 332-349, January.
    12. Anthony A. Mastor, 1970. "An Experimental Investigation and Comparative Evaluation of Production Line Balancing Techniques," Management Science, INFORMS, vol. 16(11), pages 728-746, July.
    13. Andreas Fink & Jörg Homberger, 2015. "Decentralized Multi-Project Scheduling," International Handbooks on Information Systems, in: Christoph Schwindt & Jürgen Zimmermann (ed.), Handbook on Project Management and Scheduling Vol. 2, edition 127, chapter 0, pages 685-706, Springer.
    14. Lang, Fabian & Fink, Andreas & Brandt, Tobias, 2016. "Design of automated negotiation mechanisms for decentralized heterogeneous machine scheduling," European Journal of Operational Research, Elsevier, vol. 248(1), pages 192-203.
    15. Kolisch, Rainer & Sprecher, Arno, 1997. "PSPLIB - A project scheduling problem library : OR Software - ORSEP Operations Research Software Exchange Program," European Journal of Operational Research, Elsevier, vol. 96(1), pages 205-216, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinmin Zhou & Wenhao Rao & Yaqiong Liu & Shudong Sun, 2024. "A Decentralized Optimization Algorithm for Multi-Agent Job Shop Scheduling with Private Information," Mathematics, MDPI, vol. 12(7), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wuliang Peng & Jiali lin & Jingwen Zhang & Liangwei Chen, 2022. "A bi-objective hierarchical program scheduling problem and its solution based on NSGA-III," Annals of Operations Research, Springer, vol. 308(1), pages 389-414, January.
    2. Gómez Sánchez, Mariam & Lalla-Ruiz, Eduardo & Fernández Gil, Alejandro & Castro, Carlos & Voß, Stefan, 2023. "Resource-constrained multi-project scheduling problem: A survey," European Journal of Operational Research, Elsevier, vol. 309(3), pages 958-976.
    3. Patrick Gerhards, 2020. "The multi-mode resource investment problem: a benchmark library and a computational study of lower and upper bounds," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 901-933, December.
    4. Rob Eynde & Mario Vanhoucke, 2020. "Resource-constrained multi-project scheduling: benchmark datasets and decoupled scheduling," Journal of Scheduling, Springer, vol. 23(3), pages 301-325, June.
    5. Mohammad Rostami & Morteza Bagherpour, 2020. "A lagrangian relaxation algorithm for facility location of resource-constrained decentralized multi-project scheduling problems," Operational Research, Springer, vol. 20(2), pages 857-897, June.
    6. Homberger, Jörg & Fink, Andreas, 2017. "Generic negotiation mechanisms with side payments – Design, analysis and application for decentralized resource-constrained multi-project scheduling problems," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1001-1012.
    7. Hartmann, Sönke & Briskorn, Dirk, 2022. "An updated survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 1-14.
    8. He, Yukang & Jia, Tao & Zheng, Weibo, 2023. "Tabu search for dedicated resource-constrained multiproject scheduling to minimise the maximal cash flow gap under uncertainty," European Journal of Operational Research, Elsevier, vol. 310(1), pages 34-52.
    9. Bredael, Dries & Vanhoucke, Mario, 2023. "Multi-project scheduling: A benchmark analysis of metaheuristic algorithms on various optimisation criteria and due dates," European Journal of Operational Research, Elsevier, vol. 308(1), pages 54-75.
    10. Gudmundsson, Jens & Hougaard, Jens Leth & Platz, Trine Tornøe, 2023. "Decentralized task coordination," European Journal of Operational Research, Elsevier, vol. 304(2), pages 851-864.
    11. Rahman Torba & Stéphane Dauzère-Pérès & Claude Yugma & Cédric Gallais & Juliette Pouzet, 2024. "Solving a real-life multi-skill resource-constrained multi-project scheduling problem," Annals of Operations Research, Springer, vol. 338(1), pages 69-114, July.
    12. Ben Issa, Samer & Patterson, Raymond A. & Tu, Yiliu, 2021. "Solving resource-constrained multi-project environment under different activity assumptions," International Journal of Production Economics, Elsevier, vol. 232(C).
    13. Lang, Fabian & Fink, Andreas & Brandt, Tobias, 2016. "Design of automated negotiation mechanisms for decentralized heterogeneous machine scheduling," European Journal of Operational Research, Elsevier, vol. 248(1), pages 192-203.
    14. Liu, Ying & Zhou, Jing & Lim, Andrew & Hu, Qian, 2023. "A tree search heuristic for the resource constrained project scheduling problem with transfer times," European Journal of Operational Research, Elsevier, vol. 304(3), pages 939-951.
    15. Van Eynde, Rob & Vanhoucke, Mario, 2022. "New summary measures and datasets for the multi-project scheduling problem," European Journal of Operational Research, Elsevier, vol. 299(3), pages 853-868.
    16. Debels, D. & Vanhoucke, M., 2006. "Meta-Heuristic resource constrained project scheduling: solution space restrictions and neighbourhood extensions," Vlerick Leuven Gent Management School Working Paper Series 2006-18, Vlerick Leuven Gent Management School.
    17. Felix Hübner & Patrick Gerhards & Christian Stürck & Rebekka Volk, 2021. "Solving the nuclear dismantling project scheduling problem by combining mixed-integer and constraint programming techniques and metaheuristics," Journal of Scheduling, Springer, vol. 24(3), pages 269-290, June.
    18. Jianxiong Zhang & Lin Feng & Wansheng Tang, 2014. "Optimal Contract Design of Supplier-Led Outsourcing Based on Pontryagin Maximum Principle," Journal of Optimization Theory and Applications, Springer, vol. 161(2), pages 592-607, May.
    19. Scott, James & Ho, William & Dey, Prasanta K. & Talluri, Srinivas, 2015. "A decision support system for supplier selection and order allocation in stochastic, multi-stakeholder and multi-criteria environments," International Journal of Production Economics, Elsevier, vol. 166(C), pages 226-237.
    20. M. Vanhoucke & J. Coelho & L. V. Tavares & D. Debels, 2004. "On The Morphological Structure Of A Network," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/272, Ghent University, Faculty of Economics and Business Administration.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:295:y:2021:i:1:p:261-274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.