IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v275y2019i3p822-829.html
   My bibliography  Save this article

A cutting-plane method to nonsmooth multiobjective optimization problems

Author

Listed:
  • Vieira, D.A.G.
  • Lisboa, A.C.

Abstract

The cutting-plane optimization methods rely on the idea that any subgradient of the objective function or the active/violated constraints defines a halfspace to be excluded from a set that contains an optimal solution: the localizing set. This algorithm converges towards a global minimum of any pseudoconvex subdifferentiable function. A naive extension for multiobjective optimization would be using simultaneously some subgradients of all objective functions for a given feasible point. However, as demonstrated in this paper, this approach can lead to a convergence towards non-optimal points. This paper introduces an optimization strategy for cutting-plane methods to cope with multiobjective problems without any scalarization procedure. The proposed strategy guarantees that its optimal solution is a Pareto Optimal solution of the original problem, which is also no worse than the starting point, and that any Pareto Optimal solution can be sampled. Moreover, the auxiliary problem is infeasible only if the original problem is also infeasible. The new strategy inherits the original theoretical guarantees of cutting planes methods and it can be applied to build other strategies.

Suggested Citation

  • Vieira, D.A.G. & Lisboa, A.C., 2019. "A cutting-plane method to nonsmooth multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 275(3), pages 822-829.
  • Handle: RePEc:eee:ejores:v:275:y:2019:i:3:p:822-829
    DOI: 10.1016/j.ejor.2018.12.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719300013
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.12.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. Musselman & Joseph Talavage, 1980. "A Tradeoff Cut Approach to Multiple Objective Optimization," Operations Research, INFORMS, vol. 28(6), pages 1424-1435, December.
    2. D. Aussel, 1998. "Subdifferential Properties of Quasiconvex and Pseudoconvex Functions: Unified Approach," Journal of Optimization Theory and Applications, Springer, vol. 97(1), pages 29-45, April.
    3. G. V. Loganathan & Hanif D. Sherali, 1987. "A Convergent Interactive Cutting-Plane Algorithm for Multiobjective Optimization," Operations Research, INFORMS, vol. 35(3), pages 365-377, June.
    4. Qu, Shaojian & Liu, Chen & Goh, Mark & Li, Yijun & Ji, Ying, 2014. "Nonsmooth multiobjective programming with quasi-Newton methods," European Journal of Operational Research, Elsevier, vol. 235(3), pages 503-510.
    5. Saul Gass & Thomas Saaty, 1955. "The computational algorithm for the parametric objective function," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 2(1‐2), pages 39-45, March.
    6. Jörg Fliege & Benar Fux Svaiter, 2000. "Steepest descent methods for multicriteria optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(3), pages 479-494, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kabgani, Alireza & Soleimani-damaneh, Majid, 2022. "Semi-quasidifferentiability in nonsmooth nonconvex multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 299(1), pages 35-45.
    2. Li-Ping Pang & Fan-Yun Meng & Jian-Song Yang, 2023. "A class of infeasible proximal bundle methods for nonsmooth nonconvex multi-objective optimization problems," Journal of Global Optimization, Springer, vol. 85(4), pages 891-915, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kin Keung Lai & Shashi Kant Mishra & Bhagwat Ram, 2020. "On q -Quasi-Newton’s Method for Unconstrained Multiobjective Optimization Problems," Mathematics, MDPI, vol. 8(4), pages 1-14, April.
    2. Qu, Shaojian & Ji, Ying & Jiang, Jianlin & Zhang, Qingpu, 2017. "Nonmonotone gradient methods for vector optimization with a portfolio optimization application," European Journal of Operational Research, Elsevier, vol. 263(2), pages 356-366.
    3. G. Cocchi & M. Lapucci, 2020. "An augmented Lagrangian algorithm for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 77(1), pages 29-56, September.
    4. Aksoy, Yasemin & Butler, Timothy W. & Minor, Elliott D., 1996. "Comparative studies in interactive multiple objective mathematical programming," European Journal of Operational Research, Elsevier, vol. 89(2), pages 408-422, March.
    5. Asim Roy & Jyrki Wallenius, 1991. "Nonlinear and unconstrained multiple‐objective optimization: Algorithm, computation, and application," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(4), pages 623-635, August.
    6. L. F. Prudente & D. R. Souza, 2022. "A Quasi-Newton Method with Wolfe Line Searches for Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 1107-1140, September.
    7. Shahabeddin Najafi & Masoud Hajarian, 2023. "Multiobjective Conjugate Gradient Methods on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1229-1248, June.
    8. S. Liu & L. N. Vicente, 2024. "The stochastic multi-gradient algorithm for multi-objective optimization and its application to supervised machine learning," Annals of Operations Research, Springer, vol. 339(3), pages 1119-1148, August.
    9. Suyun Liu & Luis Nunes Vicente, 2023. "Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 165-186, July.
    10. Brito, A.S. & Cruz Neto, J.X. & Santos, P.S.M. & Souza, S.S., 2017. "A relaxed projection method for solving multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 256(1), pages 17-23.
    11. Konstantin Sonntag & Bennet Gebken & Georg Müller & Sebastian Peitz & Stefan Volkwein, 2024. "A Descent Method for Nonsmooth Multiobjective Optimization in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 455-487, October.
    12. Miglierina, E. & Molho, E. & Recchioni, M.C., 2008. "Box-constrained multi-objective optimization: A gradient-like method without "a priori" scalarization," European Journal of Operational Research, Elsevier, vol. 188(3), pages 662-682, August.
    13. Friesz, Terry L. & Tourreilles, Francisco A. & Han, Anthony Fu-Wha, 1979. "Multi-Criteria Optimization Methods in Transport Project Evaluation: The Case of Rural Roads in Developing Countries," Transportation Research Forum Proceedings 1970s 318817, Transportation Research Forum.
    14. Erik Alex Papa Quiroz & Nancy Baygorrea Cusihuallpa & Nelson Maculan, 2020. "Inexact Proximal Point Methods for Multiobjective Quasiconvex Minimization on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 879-898, September.
    15. Kely D. V. Villacorta & Paulo R. Oliveira & Antoine Soubeyran, 2014. "A Trust-Region Method for Unconstrained Multiobjective Problems with Applications in Satisficing Processes," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 865-889, March.
    16. Miglierina Enrico & Molho Elena & Recchioni Maria Cristina, 2006. "Box-constrained vector optimization: a steepest descent method without “a priori” scalarization," Economics and Quantitative Methods qf0603, Department of Economics, University of Insubria.
    17. M. L. N. Gonçalves & F. S. Lima & L. F. Prudente, 2022. "Globally convergent Newton-type methods for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 83(2), pages 403-434, November.
    18. Xue, Jie & Yip, Tsz Leung & Wu, Bing & Wu, Chaozhong & van Gelder, P.H.A.J.M., 2021. "A novel fuzzy Bayesian network-based MADM model for offshore wind turbine selection in busy waterways: An application to a case in China," Renewable Energy, Elsevier, vol. 172(C), pages 897-917.
    19. Gonçalves, M.L.N. & Lima, F.S. & Prudente, L.F., 2022. "A study of Liu-Storey conjugate gradient methods for vector optimization," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    20. J. Y. Bello Cruz & G. Bouza Allende, 2014. "A Steepest Descent-Like Method for Variable Order Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 371-391, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:275:y:2019:i:3:p:822-829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.