IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i2p990-1005.html
   My bibliography  Save this article

Network Models for Multiobjective Discrete Optimization

Author

Listed:
  • David Bergman

    (Department of Operations and Information Management, University of Connecticut, Stamford, Connecticut 06901)

  • Merve Bodur

    (Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada)

  • Carlos Cardonha

    (Department of Operations and Information Management, University of Connecticut, Storrs, Connecticut 06269)

  • Andre A. Cire

    (Department of Management, Scarborough & Rotman School of Management, University of Toronto, Toronto, Ontario M1C 1A4, Canada)

Abstract

This paper provides a novel framework for solving multiobjective discrete optimization problems with an arbitrary number of objectives. Our framework represents these problems as network models, in that enumerating the Pareto frontier amounts to solving a multicriteria shortest-path problem in an auxiliary network. We design techniques for exploiting network models in order to accelerate the identification of the Pareto frontier, most notably a number of operations to simplify the network by removing nodes and arcs while preserving the set of nondominated solutions. We show that the proposed framework yields orders-of-magnitude performance improvements over existing state-of-the-art algorithms on five problem classes containing both linear and nonlinear objective functions. Summary of Contribution: Multiobjective optimization has a long history of research with applications in several domains. Our paper provides an alternative modeling and solution approach for multiobjective discrete optimization problems by leveraging graphical structures. Specifically, we encode the decision space of a problem as a layered network and propose graph reduction operators to preserve only solutions whose image are part of the Pareto frontier. The nondominated solutions can then be extracted through shortest-path algorithms on such a network. Numerical results comparing our method with state-of-the-art approaches on several problem classes, including the knapsack, set covering, and the traveling salesperson problem (TSP), suggest orders-of-magnitude runtime speed-ups for exactly enumerating the Pareto frontier, especially when the number of objective functions grows.

Suggested Citation

  • David Bergman & Merve Bodur & Carlos Cardonha & Andre A. Cire, 2022. "Network Models for Multiobjective Discrete Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 990-1005, March.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:2:p:990-1005
    DOI: 10.1287/ijoc.2021.1066
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2021.1066
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2021.1066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carraway, Robert L. & Morin, Thomas L. & Moskowitz, Herbert, 1990. "Generalized dynamic programming for multicriteria optimization," European Journal of Operational Research, Elsevier, vol. 44(1), pages 95-104, January.
    2. Satya Tamby & Daniel Vanderpooten, 2021. "Enumeration of the Nondominated Set of Multiobjective Discrete Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 72-85, January.
    3. Florios, Kostas & Mavrotas, George, 2014. "Generation of the exact Pareto set in multi-objective traveling salesman and set covering problems," MPRA Paper 105074, University Library of Munich, Germany.
    4. De Santis, Marianna & Grani, Giorgio & Palagi, Laura, 2020. "Branching with hyperplanes in the criterion space: The frontier partitioner algorithm for biobjective integer programming," European Journal of Operational Research, Elsevier, vol. 283(1), pages 57-69.
    5. Matthias Ehrgott, 2006. "A discussion of scalarization techniques for multiple objective integer programming," Annals of Operations Research, Springer, vol. 147(1), pages 343-360, October.
    6. Serpil Say{i}n & Panos Kouvelis, 2005. "The Multiobjective Discrete Optimization Problem: A Weighted Min-Max Two-Stage Optimization Approach and a Bicriteria Algorithm," Management Science, INFORMS, vol. 51(10), pages 1572-1581, October.
    7. Rong, Aiying & Figueira, José Rui, 2014. "Dynamic programming algorithms for the bi-objective integer knapsack problem," European Journal of Operational Research, Elsevier, vol. 236(1), pages 85-99.
    8. William Pettersson & Melih Ozlen, 2020. "Multiobjective Integer Programming: Synergistic Parallel Approaches," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 461-472, April.
    9. Francis Sourd & Olivier Spanjaard, 2008. "A Multiobjective Branch-and-Bound Framework: Application to the Biobjective Spanning Tree Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 472-484, August.
    10. Ted Ralphs & Matthew Saltzman & Margaret Wiecek, 2006. "An improved algorithm for solving biobjective integer programs," Annals of Operations Research, Springer, vol. 147(1), pages 43-70, October.
    11. Thomas Stidsen & Kim Allan Andersen & Bernd Dammann, 2014. "A Branch and Bound Algorithm for a Class of Biobjective Mixed Integer Programs," Management Science, INFORMS, vol. 60(4), pages 1009-1032, April.
    12. Klein, Dieter & Hannan, Edward, 1982. "An algorithm for the multiple objective integer linear programming problem," European Journal of Operational Research, Elsevier, vol. 9(4), pages 378-385, April.
    13. Boland, Natashia & Charkhgard, Hadi & Savelsbergh, Martin, 2017. "A new method for optimizing a linear function over the efficient set of a multiobjective integer program," European Journal of Operational Research, Elsevier, vol. 260(3), pages 904-919.
    14. Laumanns, Marco & Thiele, Lothar & Zitzler, Eckart, 2006. "An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method," European Journal of Operational Research, Elsevier, vol. 169(3), pages 932-942, March.
    15. Tolga Bektaş, 2018. "Disjunctive Programming for Multiobjective Discrete Optimisation," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 625-633, November.
    16. Przybylski, Anthony & Gandibleux, Xavier, 2017. "Multi-objective branch and bound," European Journal of Operational Research, Elsevier, vol. 260(3), pages 856-872.
    17. José Figueira & Luís Paquete & Marco Simões & Daniel Vanderpooten, 2013. "Algorithmic improvements on dynamic programming for the bi-objective {0,1} knapsack problem," Computational Optimization and Applications, Springer, vol. 56(1), pages 97-111, September.
    18. Sophie N. Parragh & Fabien Tricoire, 2019. "Branch-and-Bound for Bi-objective Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 805-822, October.
    19. Kathrin Klamroth & Margaret M. Wiecek, 2000. "Dynamic programming approaches to the multiple criteria knapsack problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(1), pages 57-76, February.
    20. Henig, Mordechai I., 1986. "The shortest path problem with two objective functions," European Journal of Operational Research, Elsevier, vol. 25(2), pages 281-291, May.
    21. Sune Lauth Gadegaard & Lars Relund Nielsen & Matthias Ehrgott, 2019. "Bi-objective Branch-and-Cut Algorithms Based on LP Relaxation and Bound Sets," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 790-804, October.
    22. Andre A. Cire & Willem-Jan van Hoeve, 2013. "Multivalued Decision Diagrams for Sequencing Problems," Operations Research, INFORMS, vol. 61(6), pages 1411-1428, December.
    23. Klamroth, Kathrin & Lacour, Renaud & Vanderpooten, Daniel, 2015. "On the representation of the search region in multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 245(3), pages 767-778.
    24. Michael Masin & Yossi Bukchin, 2008. "Diversity Maximization Approach for Multiobjective Optimization," Operations Research, INFORMS, vol. 56(2), pages 411-424, April.
    25. Tyler Perini & Natashia Boland & Diego Pecin & Martin Savelsbergh, 2020. "A Criterion Space Method for Biobjective Mixed Integer Programming: The Boxed Line Method," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 16-39, January.
    26. Kerstin Dächert & Kathrin Klamroth, 2015. "A linear bound on the number of scalarizations needed to solve discrete tricriteria optimization problems," Journal of Global Optimization, Springer, vol. 61(4), pages 643-676, April.
    27. Flavio Molina & Reinaldo Morabito & Silvio Alexandre de Araujo, 2016. "MIP models for production lot sizing problems with distribution costs and cargo arrangement," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(11), pages 1395-1407, November.
    28. Melih Ozlen & Benjamin A. Burton & Cameron A. G. MacRae, 2014. "Multi-Objective Integer Programming: An Improved Recursive Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 470-482, February.
    29. Daniel Jornada & V. Jorge Leon, 2020. "Filtering Algorithms for Biobjective Mixed Binary Linear Optimization Problems with a Multiple-Choice Constraint," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 57-73, January.
    30. Nicolas Jozefowiez & Gilbert Laporte & Frédéric Semet, 2012. "A Generic Branch-and-Cut Algorithm for Multiobjective Optimization Problems: Application to the Multilabel Traveling Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 554-564, November.
    31. Mavrotas, G. & Diakoulaki, D., 1998. "A branch and bound algorithm for mixed zero-one multiple objective linear programming," European Journal of Operational Research, Elsevier, vol. 107(3), pages 530-541, June.
    32. Özlen, Melih & Azizoglu, Meral, 2009. "Multi-objective integer programming: A general approach for generating all non-dominated solutions," European Journal of Operational Research, Elsevier, vol. 199(1), pages 25-35, November.
    33. Kirlik, Gokhan & Sayın, Serpil, 2014. "A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems," European Journal of Operational Research, Elsevier, vol. 232(3), pages 479-488.
    34. Banu Lokman & Murat Köksalan, 2013. "Finding all nondominated points of multi-objective integer programs," Journal of Global Optimization, Springer, vol. 57(2), pages 347-365, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nathan Adelgren & Akshay Gupte, 2022. "Branch-and-Bound for Biobjective Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 909-933, March.
    2. Forget, Nicolas & Gadegaard, Sune Lauth & Nielsen, Lars Relund, 2022. "Warm-starting lower bound set computations for branch-and-bound algorithms for multi objective integer linear programs," European Journal of Operational Research, Elsevier, vol. 302(3), pages 909-924.
    3. Kerstin Dächert & Tino Fleuren & Kathrin Klamroth, 2024. "A simple, efficient and versatile objective space algorithm for multiobjective integer programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 351-384, August.
    4. Natashia Boland & Hadi Charkhgard & Martin Savelsbergh, 2015. "A Criterion Space Search Algorithm for Biobjective Integer Programming: The Balanced Box Method," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 735-754, November.
    5. Julius Bauß & Michael Stiglmayr, 2024. "Augmenting bi-objective branch and bound by scalarization-based information," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 85-121, August.
    6. Holzmann, Tim & Smith, J.C., 2018. "Solving discrete multi-objective optimization problems using modified augmented weighted Tchebychev scalarizations," European Journal of Operational Research, Elsevier, vol. 271(2), pages 436-449.
    7. Satya Tamby & Daniel Vanderpooten, 2021. "Enumeration of the Nondominated Set of Multiobjective Discrete Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 72-85, January.
    8. Bashir Bashir & Özlem Karsu, 2022. "Solution approaches for equitable multiobjective integer programming problems," Annals of Operations Research, Springer, vol. 311(2), pages 967-995, April.
    9. De Santis, Marianna & Grani, Giorgio & Palagi, Laura, 2020. "Branching with hyperplanes in the criterion space: The frontier partitioner algorithm for biobjective integer programming," European Journal of Operational Research, Elsevier, vol. 283(1), pages 57-69.
    10. Özarık, Sami Serkan & Lokman, Banu & Köksalan, Murat, 2020. "Distribution based representative sets for multi-objective integer programs," European Journal of Operational Research, Elsevier, vol. 284(2), pages 632-643.
    11. Kerstin Dächert & Kathrin Klamroth, 2015. "A linear bound on the number of scalarizations needed to solve discrete tricriteria optimization problems," Journal of Global Optimization, Springer, vol. 61(4), pages 643-676, April.
    12. Dächert, Kerstin & Klamroth, Kathrin & Lacour, Renaud & Vanderpooten, Daniel, 2017. "Efficient computation of the search region in multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 260(3), pages 841-855.
    13. Ceyhan, Gökhan & Köksalan, Murat & Lokman, Banu, 2019. "Finding a representative nondominated set for multi-objective mixed integer programs," European Journal of Operational Research, Elsevier, vol. 272(1), pages 61-77.
    14. Dinçer Konur & Hadi Farhangi & Cihan H. Dagli, 2016. "A multi-objective military system of systems architecting problem with inflexible and flexible systems: formulation and solution methods," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(4), pages 967-1006, October.
    15. Ozgu Turgut & Evrim Dalkiran & Alper E. Murat, 2019. "An exact parallel objective space decomposition algorithm for solving multi-objective integer programming problems," Journal of Global Optimization, Springer, vol. 75(1), pages 35-62, September.
    16. William Pettersson & Melih Ozlen, 2020. "Multiobjective Integer Programming: Synergistic Parallel Approaches," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 461-472, April.
    17. Tolga Bektaş, 2018. "Disjunctive Programming for Multiobjective Discrete Optimisation," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 625-633, November.
    18. Doğan, Ilgın & Lokman, Banu & Köksalan, Murat, 2022. "Representing the nondominated set in multi-objective mixed-integer programs," European Journal of Operational Research, Elsevier, vol. 296(3), pages 804-818.
    19. Cacchiani, Valentina & D’Ambrosio, Claudia, 2017. "A branch-and-bound based heuristic algorithm for convex multi-objective MINLPs," European Journal of Operational Research, Elsevier, vol. 260(3), pages 920-933.
    20. Przybylski, Anthony & Gandibleux, Xavier, 2017. "Multi-objective branch and bound," European Journal of Operational Research, Elsevier, vol. 260(3), pages 856-872.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:2:p:990-1005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.