IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i4p616-d346816.html
   My bibliography  Save this article

On q -Quasi-Newton’s Method for Unconstrained Multiobjective Optimization Problems

Author

Listed:
  • Kin Keung Lai

    (College of Economics, Shenzhen University, Shenzhen 518060, China
    These authors contributed equally to this work.)

  • Shashi Kant Mishra

    (Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
    These authors contributed equally to this work.)

  • Bhagwat Ram

    (DST-Centre for Interdisciplinary Mathematical Sciences, Institute of Science, Banaras Hindu University, Varanasi 221005, India
    These authors contributed equally to this work.)

Abstract

A parameter-free optimization technique is applied in Quasi-Newton’s method for solving unconstrained multiobjective optimization problems. The components of the Hessian matrix are constructed using q -derivative, which is positive definite at every iteration. The step-length is computed by an Armijo-like rule which is responsible to escape the point from local minimum to global minimum at every iteration due to q -derivative. Further, the rate of convergence is proved as a superlinear in a local neighborhood of a minimum point based on q -derivative. Finally, the numerical experiments show better performance.

Suggested Citation

  • Kin Keung Lai & Shashi Kant Mishra & Bhagwat Ram, 2020. "On q -Quasi-Newton’s Method for Unconstrained Multiobjective Optimization Problems," Mathematics, MDPI, vol. 8(4), pages 1-14, April.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:616-:d:346816
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/4/616/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/4/616/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qu, Shaojian & Liu, Chen & Goh, Mark & Li, Yijun & Ji, Ying, 2014. "Nonsmooth multiobjective programming with quasi-Newton methods," European Journal of Operational Research, Elsevier, vol. 235(3), pages 503-510.
    2. Vahid Morovati & Hadi Basirzadeh & Latif Pourkarimi, 2018. "Quasi-Newton methods for multiobjective optimization problems," 4OR, Springer, vol. 16(3), pages 261-294, September.
    3. Jörg Fliege & Benar Fux Svaiter, 2000. "Steepest descent methods for multicriteria optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(3), pages 479-494, August.
    4. Noor, Muhammad Aslam & Noor, Khalida Inayat & Awan, Muhammad Uzair, 2015. "Some quantum estimates for Hermite–Hadamard inequalities," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 675-679.
    5. Thai Chuong, 2013. "Newton-like methods for efficient solutions in vector optimization," Computational Optimization and Applications, Springer, vol. 54(3), pages 495-516, April.
    6. Saul Gass & Thomas Saaty, 1955. "The computational algorithm for the parametric objective function," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 2(1‐2), pages 39-45, March.
    7. Gouvêa, Érica J.C. & Regis, Rommel G. & Soterroni, Aline C. & Scarabello, Marluce C. & Ramos, Fernando M., 2016. "Global optimization using q-gradients," European Journal of Operational Research, Elsevier, vol. 251(3), pages 727-738.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. L. F. Prudente & D. R. Souza, 2022. "A Quasi-Newton Method with Wolfe Line Searches for Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 1107-1140, September.
    2. Kin Keung Lai & Shashi Kant Mishra & Ravina Sharma & Manjari Sharma & Bhagwat Ram, 2023. "A Modified q-BFGS Algorithm for Unconstrained Optimization," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
    3. Kin Keung Lai & Shashi Kant Mishra & Bhagwat Ram & Ravina Sharma, 2023. "A Conjugate Gradient Method: Quantum Spectral Polak–Ribiére–Polyak Approach for Unconstrained Optimization Problems," Mathematics, MDPI, vol. 11(23), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G. Cocchi & M. Lapucci, 2020. "An augmented Lagrangian algorithm for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 77(1), pages 29-56, September.
    2. Vieira, D.A.G. & Lisboa, A.C., 2019. "A cutting-plane method to nonsmooth multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 275(3), pages 822-829.
    3. L. F. Prudente & D. R. Souza, 2022. "A Quasi-Newton Method with Wolfe Line Searches for Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 1107-1140, September.
    4. Gonçalves, M.L.N. & Lima, F.S. & Prudente, L.F., 2022. "A study of Liu-Storey conjugate gradient methods for vector optimization," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    5. Qu, Shaojian & Ji, Ying & Jiang, Jianlin & Zhang, Qingpu, 2017. "Nonmonotone gradient methods for vector optimization with a portfolio optimization application," European Journal of Operational Research, Elsevier, vol. 263(2), pages 356-366.
    6. Suyun Liu & Luis Nunes Vicente, 2023. "Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 165-186, July.
    7. Chen, Wang & Yang, Xinmin & Zhao, Yong, 2023. "Memory gradient method for multiobjective optimization," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    8. Wang Chen & Xinmin Yang & Yong Zhao, 2023. "Conditional gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 85(3), pages 857-896, July.
    9. Brito, A.S. & Cruz Neto, J.X. & Santos, P.S.M. & Souza, S.S., 2017. "A relaxed projection method for solving multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 256(1), pages 17-23.
    10. M. L. N. Gonçalves & L. F. Prudente, 2020. "On the extension of the Hager–Zhang conjugate gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 76(3), pages 889-916, July.
    11. Shahabeddin Najafi & Masoud Hajarian, 2023. "Multiobjective Conjugate Gradient Methods on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1229-1248, June.
    12. Kazemi, Abolghasem & Moreno, Jovita & Iribarren, Diego, 2023. "Economic optimization and comparative environmental assessment of natural gas combined cycle power plants with CO2 capture," Energy, Elsevier, vol. 277(C).
    13. Ellen H. Fukuda & L. M. Graña Drummond & Fernanda M. P. Raupp, 2016. "An external penalty-type method for multicriteria," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 493-513, July.
    14. Thai Chuong, 2013. "Newton-like methods for efficient solutions in vector optimization," Computational Optimization and Applications, Springer, vol. 54(3), pages 495-516, April.
    15. Morovati, Vahid & Pourkarimi, Latif, 2019. "Extension of Zoutendijk method for solving constrained multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 273(1), pages 44-57.
    16. Kin Keung Lai & Shashi Kant Mishra & Ravina Sharma & Manjari Sharma & Bhagwat Ram, 2023. "A Modified q-BFGS Algorithm for Unconstrained Optimization," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
    17. Waewta Luangboon & Kamsing Nonlaopon & Jessada Tariboon & Sotiris K. Ntouyas, 2021. "Simpson- and Newton-Type Inequalities for Convex Functions via ( p , q )-Calculus," Mathematics, MDPI, vol. 9(12), pages 1-21, June.
    18. Gabriel Haeser & Alberto Ramos, 2020. "Constraint Qualifications for Karush–Kuhn–Tucker Conditions in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 187(2), pages 469-487, November.
    19. Miglierina, E. & Molho, E. & Recchioni, M.C., 2008. "Box-constrained multi-objective optimization: A gradient-like method without "a priori" scalarization," European Journal of Operational Research, Elsevier, vol. 188(3), pages 662-682, August.
    20. Dalton, Gordon & Bardócz, Tamás & Blanch, Mike & Campbell, David & Johnson, Kate & Lawrence, Gareth & Lilas, Theodore & Friis-Madsen, Erik & Neumann, Frank & Nikitas, Nikitakos & Ortega, Saul Torres &, 2019. "Feasibility of investment in Blue Growth multiple-use of space and multi-use platform projects; results of a novel assessment approach and case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 338-359.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:616-:d:346816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.