IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v275y2019i1p334-346.html
   My bibliography  Save this article

Integrating berth allocation decisions in a fleet composition and periodic routing problem of platform supply vessels

Author

Listed:
  • Cruz, Roberto
  • Bergsten Mendes, André
  • Bahiense, Laura
  • Wu, Yue

Abstract

The aim of this work is to present mathematical models and a heuristic solution strategy to solve the heterogeneous fleet-sizing problem of platform supply vessels (PSVs) that support the offshore oil and gas exploration and production (E&P) activities. The problem considered in this research takes into account a novel characteristic related to the berth allocation problem of the supply base, which must be considered together with the decisions of selecting the departure days and the routes. The adopted solution strategy consists of sequentially solving models that capture different aspects of the problem, by starting with models that are simpler to solve. The solution found in one step provides a lower bound to the next step. This procedure was devised in order to reduce the search space and to speed up convergence. The proposed solution strategy was applied to real instances in Brazil, which has up to 79 offshore units grouped into clusters, with fair/acceptable results. The procedure allowed for assessing the impact of the number of berths on the fleet composition.

Suggested Citation

  • Cruz, Roberto & Bergsten Mendes, André & Bahiense, Laura & Wu, Yue, 2019. "Integrating berth allocation decisions in a fleet composition and periodic routing problem of platform supply vessels," European Journal of Operational Research, Elsevier, vol. 275(1), pages 334-346.
  • Handle: RePEc:eee:ejores:v:275:y:2019:i:1:p:334-346
    DOI: 10.1016/j.ejor.2018.11.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171830955X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.11.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamidreza Eskandari & Ehsan Mahmoodi, 2016. "A simulation-based multi-objective optimization study of the fleet sizing problem in the offshore industry," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 18(4), pages 436-457, December.
    2. Baptista, Susana & Oliveira, Rui Carvalho & Zuquete, Eduardo, 2002. "A period vehicle routing case study," European Journal of Operational Research, Elsevier, vol. 139(2), pages 220-229, June.
    3. Jean-François Cordeau & Gilbert Laporte & Pasquale Legato & Luigi Moccia, 2005. "Models and Tabu Search Heuristics for the Berth-Allocation Problem," Transportation Science, INFORMS, vol. 39(4), pages 526-538, November.
    4. Halvorsen-Weare, Elin E. & Fagerholt, Kjetil & Nonås, Lars Magne & Asbjørnslett, Bjørn Egil, 2012. "Optimal fleet composition and periodic routing of offshore supply vessels," European Journal of Operational Research, Elsevier, vol. 223(2), pages 508-517.
    5. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    6. Hemmelmayr, Vera C., 2015. "Sequential and parallel large neighborhood search algorithms for the periodic location routing problem," European Journal of Operational Research, Elsevier, vol. 243(1), pages 52-60.
    7. Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2001. "The dynamic berth allocation problem for a container port," Transportation Research Part B: Methodological, Elsevier, vol. 35(4), pages 401-417, May.
    8. Bjørnar Aas & Øyvind Halskau Sr & Stein W Wallace, 2009. "The role of supply vessels in offshore logistics," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 11(3), pages 302-325, September.
    9. Agra, Agostinho & Oliveira, Maryse, 2018. "MIP approaches for the integrated berth allocation and quay crane assignment and scheduling problem," European Journal of Operational Research, Elsevier, vol. 264(1), pages 138-148.
    10. Michel Povlovitsch Seixas & André Bergsten Mendes & Marcos Ribeiro Pereira Barretto & Claudio Barbieri da Cunha & Marco Antonio Brinati & Roberto Edward Cruz & Yue Wu & Philip A Wilson, 2016. "A heuristic approach to stowing general cargo into platform supply vessels," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(1), pages 148-158, January.
    11. Tan, C.C.R. & Beasley, J.E., 1984. "A heuristic algorithm for the period vehicle routing problem," Omega, Elsevier, vol. 12(5), pages 497-504.
    12. I Gribkovskaia & G Laporte & A Shlopak, 2008. "A tabu search heuristic for a routing problem arising in servicing of offshore oil and gas platforms," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(11), pages 1449-1459, November.
    13. Fagerholt, Kjetil & Lindstad, Håkon, 2000. "Optimal policies for maintaining a supply service in the Norwegian Sea," Omega, Elsevier, vol. 28(3), pages 269-275, June.
    14. Shyshou, Aliaksandr & Gribkovskaia, Irina & Barceló, Jaume, 2010. "A simulation study of the fleet sizing problem arising in offshore anchor handling operations," European Journal of Operational Research, Elsevier, vol. 203(1), pages 230-240, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Jingjing & Tang, Guolei & Song, Xiangqun, 2022. "Collaboration of vessel speed optimization with berth allocation and quay crane assignment considering vessel service differentiation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    2. Vieira, Bruno S. & Ribeiro, Glaydston M. & Bahiense, Laura & Cruz, Roberto & Mendes, André B. & Laporte, Gilbert, 2021. "Exact and heuristic algorithms for the fleet composition and periodic routing problem of offshore supply vessels with berth allocation decisions," European Journal of Operational Research, Elsevier, vol. 295(3), pages 908-923.
    3. Zhen, Lu & Zhuge, Dan & Wang, Shuaian & Wang, Kai, 2022. "Integrated berth and yard space allocation under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 1-27.
    4. Wu, Lingxiao & Jia, Shuai & Wang, Shuaian, 2020. "Pilotage planning in seaports," European Journal of Operational Research, Elsevier, vol. 287(1), pages 90-105.
    5. Maciel M. Queiroz & André Bergsten Mendes, 2020. "Critical Success Factors of the Brazilian Offshore Support Vessel Industry: A Flexible Systems Approach," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 21(1), pages 33-48, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vieira, Bruno S. & Ribeiro, Glaydston M. & Bahiense, Laura & Cruz, Roberto & Mendes, André B. & Laporte, Gilbert, 2021. "Exact and heuristic algorithms for the fleet composition and periodic routing problem of offshore supply vessels with berth allocation decisions," European Journal of Operational Research, Elsevier, vol. 295(3), pages 908-923.
    2. Maciel M. Queiroz & André Bergsten Mendes, 2020. "Critical Success Factors of the Brazilian Offshore Support Vessel Industry: A Flexible Systems Approach," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 21(1), pages 33-48, June.
    3. Amiri, Mohsen & Amin, Saman Hassanzadeh & Tavakkoli-Moghaddam, Reza, 2019. "A Lagrangean decomposition approach for a novel two-echelon node-based location-routing problem in an offshore oil and gas supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 96-114.
    4. Halvorsen-Weare, Elin E. & Fagerholt, Kjetil & Nonås, Lars Magne & Asbjørnslett, Bjørn Egil, 2012. "Optimal fleet composition and periodic routing of offshore supply vessels," European Journal of Operational Research, Elsevier, vol. 223(2), pages 508-517.
    5. Sung Won Cho & Hyun Ji Park & Chulung Lee, 2021. "An integrated method for berth allocation and quay crane assignment to allow for reassignment of vessels to other terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 123-153, March.
    6. Kramer, Arthur & Lalla-Ruiz, Eduardo & Iori, Manuel & Voß, Stefan, 2019. "Novel formulations and modeling enhancements for the dynamic berth allocation problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 170-185.
    7. T. R. Lalita & G. S. R. Murthy, 2022. "Compact ILP formulations for a class of solutions to berth allocation and quay crane scheduling problems," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 413-439, March.
    8. Changchun Liu & Xi Xiang & Li Zheng, 2020. "A two-stage robust optimization approach for the berth allocation problem under uncertainty," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 425-452, June.
    9. El Mehdi, Er Raqabi & Ilyas, Himmich & Nizar, El Hachemi & Issmaïl, El Hallaoui & François, Soumis, 2023. "Incremental LNS framework for integrated production, inventory, and vessel scheduling: Application to a global supply chain," Omega, Elsevier, vol. 116(C).
    10. Liu, Baoli & Li, Zhi-Chun & Sheng, Dian & Wang, Yadong, 2021. "Integrated planning of berth allocation and vessel sequencing in a seaport with one-way navigation channel," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 23-47.
    11. Mao, Anjia & Yu, Tiantian & Ding, Zhaohao & Fang, Sidun & Guo, Jinran & Sheng, Qianqian, 2022. "Optimal scheduling for seaport integrated energy system considering flexible berth allocation," Applied Energy, Elsevier, vol. 308(C).
    12. Zhen, Lu & Zhuge, Dan & Wang, Shuaian & Wang, Kai, 2022. "Integrated berth and yard space allocation under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 1-27.
    13. Xiang, Xi & Liu, Changchun, 2021. "An expanded robust optimisation approach for the berth allocation problem considering uncertain operation time," Omega, Elsevier, vol. 103(C).
    14. Fernández, Elena & Munoz-Marquez, Manuel, 2022. "New formulations and solutions for the strategic berth template problem," European Journal of Operational Research, Elsevier, vol. 298(1), pages 99-117.
    15. Iris, Çağatay & Pacino, Dario & Ropke, Stefan, 2017. "Improved formulations and an Adaptive Large Neighborhood Search heuristic for the integrated berth allocation and quay crane assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 123-147.
    16. Wang, Chong & Liu, Kaiyuan & Zhang, Canrong & Miao, Lixin, 2024. "Distributionally robust chance-constrained optimization for the integrated berth allocation and quay crane assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 182(C).
    17. Liu, Baoli & Li, Zhi-Chun & Wang, Yadong & Sheng, Dian, 2021. "Short-term berth planning and ship scheduling for a busy seaport with channel restrictions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    18. Ya Xu & Kelei Xue & Yuquan Du, 2018. "Berth Scheduling Problem Considering Traffic Limitations in the Navigation Channel," Sustainability, MDPI, vol. 10(12), pages 1-22, December.
    19. Fanrui Xie & Tao Wu & Canrong Zhang, 2019. "A Branch-and-Price Algorithm for the Integrated Berth Allocation and Quay Crane Assignment Problem," Transportation Science, INFORMS, vol. 53(5), pages 1427-1454, September.
    20. Paul Corry & Christian Bierwirth, 2019. "The Berth Allocation Problem with Channel Restrictions," Transportation Science, INFORMS, vol. 53(3), pages 708-727, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:275:y:2019:i:1:p:334-346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.