IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v295y2021i3p908-923.html
   My bibliography  Save this article

Exact and heuristic algorithms for the fleet composition and periodic routing problem of offshore supply vessels with berth allocation decisions

Author

Listed:
  • Vieira, Bruno S.
  • Ribeiro, Glaydston M.
  • Bahiense, Laura
  • Cruz, Roberto
  • Mendes, André B.
  • Laporte, Gilbert

Abstract

This paper presents a branch-and-cut algorithm and an adaptive large neighborhood search (ALNS) heuristic for the periodic supply vessel planning problem (PSVPP) arising in the upstream offshore petroleum logistics chain. Platform supply vessels support the offshore oil and gas exploration and production activities by transporting all the necessary material and equipment back and forth between offshore units and an onshore supply base according to a delivery schedule. The PSVPP consists of solving a periodic vehicle routing problem and simultaneously determining an optimal fleet size and mix of heterogeneous offshore supply vessels, their weekly routes and schedules for servicing the offshore oil and gas installations, and the berth allocations at the supply base. The branch-and-cut algorithm considers a reduced formulation for the problem which performs much better than the complete one, and easily finds optimal solutions for the smaller and most of the clustered instances. The ALNS heuristic contains new features which include multiple starts and spaced local searches. These algorithms were tested on instances with up to 79 offshore units, providing better results than the best available.

Suggested Citation

  • Vieira, Bruno S. & Ribeiro, Glaydston M. & Bahiense, Laura & Cruz, Roberto & Mendes, André B. & Laporte, Gilbert, 2021. "Exact and heuristic algorithms for the fleet composition and periodic routing problem of offshore supply vessels with berth allocation decisions," European Journal of Operational Research, Elsevier, vol. 295(3), pages 908-923.
  • Handle: RePEc:eee:ejores:v:295:y:2021:i:3:p:908-923
    DOI: 10.1016/j.ejor.2021.03.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721002484
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.03.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Braysy, Olli & Hasle, Geir & Dullaert, Wout, 2004. "A multi-start local search algorithm for the vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 159(3), pages 586-605, December.
    2. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    3. Cruz, Roberto & Bergsten Mendes, André & Bahiense, Laura & Wu, Yue, 2019. "Integrating berth allocation decisions in a fleet composition and periodic routing problem of platform supply vessels," European Journal of Operational Research, Elsevier, vol. 275(1), pages 334-346.
    4. Thibaut Vidal & Teodor Gabriel Crainic & Michel Gendreau & Nadia Lahrichi & Walter Rei, 2012. "A Hybrid Genetic Algorithm for Multidepot and Periodic Vehicle Routing Problems," Operations Research, INFORMS, vol. 60(3), pages 611-624, June.
    5. Baptista, Susana & Oliveira, Rui Carvalho & Zuquete, Eduardo, 2002. "A period vehicle routing case study," European Journal of Operational Research, Elsevier, vol. 139(2), pages 220-229, June.
    6. Ropke, Stefan & Pisinger, David, 2006. "A unified heuristic for a large class of Vehicle Routing Problems with Backhauls," European Journal of Operational Research, Elsevier, vol. 171(3), pages 750-775, June.
    7. Halvorsen-Weare, Elin E. & Fagerholt, Kjetil & Nonås, Lars Magne & Asbjørnslett, Bjørn Egil, 2012. "Optimal fleet composition and periodic routing of offshore supply vessels," European Journal of Operational Research, Elsevier, vol. 223(2), pages 508-517.
    8. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    9. Çağrı Koç & Ola Jabali & Gilbert Laporte, 2018. "Long-haul vehicle routing and scheduling with idling options," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(2), pages 235-246, February.
    10. Bjørnar Aas & Øyvind Halskau Sr & Stein W Wallace, 2009. "The role of supply vessels in offshore logistics," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 11(3), pages 302-325, September.
    11. I Gribkovskaia & G Laporte & A Shlopak, 2008. "A tabu search heuristic for a routing problem arising in servicing of offshore oil and gas platforms," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(11), pages 1449-1459, November.
    12. Fagerholt, Kjetil & Lindstad, Håkon, 2000. "Optimal policies for maintaining a supply service in the Norwegian Sea," Omega, Elsevier, vol. 28(3), pages 269-275, June.
    13. Roberto Baldacci & Enrico Bartolini & Aristide Mingozzi & Andrea Valletta, 2011. "An Exact Algorithm for the Period Routing Problem," Operations Research, INFORMS, vol. 59(1), pages 228-241, February.
    14. Thomas Borthen & Henrik Loennechen & Xin Wang & Kjetil Fagerholt & Thibaut Vidal, 2018. "A genetic search-based heuristic for a fleet size and periodic routing problem with application to offshore supply planning," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(2), pages 121-150, June.
    15. Gianni Codato & Matteo Fischetti, 2006. "Combinatorial Benders' Cuts for Mixed-Integer Linear Programming," Operations Research, INFORMS, vol. 54(4), pages 756-766, August.
    16. Iris, Çağatay & Pacino, Dario & Ropke, Stefan, 2017. "Improved formulations and an Adaptive Large Neighborhood Search heuristic for the integrated berth allocation and quay crane assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 123-147.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin-Iradi, Bernardo & Pacino, Dario & Ropke, Stefan, 2024. "An adaptive large neighborhood search heuristic for the multi-port continuous berth allocation problem," European Journal of Operational Research, Elsevier, vol. 316(1), pages 152-167.
    2. He, Dongdong & Ceder, Avishai (Avi) & Zhang, Wenyi & Guan, Wei & Qi, Geqi, 2023. "Optimization of a rural bus service integrated with e-commerce deliveries guided by a new sustainable policy in China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    3. Guo, Liming & Zheng, Jianfeng & Du, Jian & Gao, Ziyou & Fagerholt, Kjetil, 2024. "Integrated planning of berth allocation, quay crane assignment and yard assignment in multiple cooperative terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cruz, Roberto & Bergsten Mendes, André & Bahiense, Laura & Wu, Yue, 2019. "Integrating berth allocation decisions in a fleet composition and periodic routing problem of platform supply vessels," European Journal of Operational Research, Elsevier, vol. 275(1), pages 334-346.
    2. Maciel M. Queiroz & André Bergsten Mendes, 2020. "Critical Success Factors of the Brazilian Offshore Support Vessel Industry: A Flexible Systems Approach," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 21(1), pages 33-48, June.
    3. Santos, A.M.P. & Fagerholt, Kjetil & Laporte, Gilbert & Guedes Soares, C., 2022. "A stochastic optimization approach for the supply vessel planning problem under uncertain demand," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 209-228.
    4. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    5. Thomas Borthen & Henrik Loennechen & Xin Wang & Kjetil Fagerholt & Thibaut Vidal, 2018. "A genetic search-based heuristic for a fleet size and periodic routing problem with application to offshore supply planning," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(2), pages 121-150, June.
    6. Ulsrud, Karl Petter & Vandvik, Anders Helgeland & Ormevik, Andreas Breivik & Fagerholt, Kjetil & Meisel, Frank, 2022. "A time-dependent vessel routing problem with speed optimization," European Journal of Operational Research, Elsevier, vol. 303(2), pages 891-907.
    7. Amiri, Mohsen & Amin, Saman Hassanzadeh & Tavakkoli-Moghaddam, Reza, 2019. "A Lagrangean decomposition approach for a novel two-echelon node-based location-routing problem in an offshore oil and gas supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 96-114.
    8. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2014. "A unified solution framework for multi-attribute vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 234(3), pages 658-673.
    9. Halvorsen-Weare, Elin E. & Fagerholt, Kjetil & Nonås, Lars Magne & Asbjørnslett, Bjørn Egil, 2012. "Optimal fleet composition and periodic routing of offshore supply vessels," European Journal of Operational Research, Elsevier, vol. 223(2), pages 508-517.
    10. Hintsch, Timo & Irnich, Stefan, 2018. "Large multiple neighborhood search for the clustered vehicle-routing problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 118-131.
    11. Ostermeier, Manuel, 2024. "The supply of convenience stores: Challenges of short-distance routing within the constraints of working time regulations," European Journal of Operational Research, Elsevier, vol. 314(3), pages 997-1012.
    12. Liu, Ran & Xie, Xiaolan & Garaix, Thierry, 2014. "Hybridization of tabu search with feasible and infeasible local searches for periodic home health care logistics," Omega, Elsevier, vol. 47(C), pages 17-32.
    13. Correcher, Juan Francisco & Van den Bossche, Thomas & Alvarez-Valdes, Ramon & Vanden Berghe, Greet, 2019. "The berth allocation problem in terminals with irregular layouts," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1096-1108.
    14. Timo Hintsch & Stefan Irnich, 2017. "Large Multiple Neighborhood Search for the Clustered Vehicle-Routing Problem," Working Papers 1701, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    15. Iris, Çağatay & Christensen, Jonas & Pacino, Dario & Ropke, Stefan, 2018. "Flexible ship loading problem with transfer vehicle assignment and scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 113-134.
    16. Hemmelmayr, Vera C., 2015. "Sequential and parallel large neighborhood search algorithms for the periodic location routing problem," European Journal of Operational Research, Elsevier, vol. 243(1), pages 52-60.
    17. Zhen, Lu & Zhuge, Dan & Wang, Shuaian & Wang, Kai, 2022. "Integrated berth and yard space allocation under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 1-27.
    18. Aksen, Deniz & Kaya, Onur & Sibel Salman, F. & Tüncel, Özge, 2014. "An adaptive large neighborhood search algorithm for a selective and periodic inventory routing problem," European Journal of Operational Research, Elsevier, vol. 239(2), pages 413-426.
    19. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    20. Guo, Liming & Zheng, Jianfeng & Du, Jian & Gao, Ziyou & Fagerholt, Kjetil, 2024. "Integrated planning of berth allocation, quay crane assignment and yard assignment in multiple cooperative terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:295:y:2021:i:3:p:908-923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.