IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v22y2019i6d10.1007_s10951-019-00607-9.html
   My bibliography  Save this article

Shop scheduling problems with pliable jobs

Author

Listed:
  • S. Knust

    (University of Osnabrück)

  • N. V. Shakhlevich

    (University of Leeds)

  • S. Waldherr

    (Technical University of Munich)

  • C. Weiß

    (Fraunhofer Institute for Industrial Mathematics ITWM)

Abstract

In this paper, we study a new type of flow shop and open shop models, which handle so-called “pliable” jobs: their total processing times are given, but individual processing times of operations which make up these jobs are flexible and need to be determined. Our analysis demonstrates that many versions of flow shop and open shop problems with pliable jobs appear to be computationally easier than their traditional counterparts, unless the jobs have job-dependent restrictions imposed on minimum and maximum operation lengths. In the latter case, most problems with pliability become NP-hard even in the case of two machines.

Suggested Citation

  • S. Knust & N. V. Shakhlevich & S. Waldherr & C. Weiß, 2019. "Shop scheduling problems with pliable jobs," Journal of Scheduling, Springer, vol. 22(6), pages 635-661, December.
  • Handle: RePEc:spr:jsched:v:22:y:2019:i:6:d:10.1007_s10951-019-00607-9
    DOI: 10.1007/s10951-019-00607-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-019-00607-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-019-00607-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paolo Serafini, 1996. "Scheduling Jobs on Several Machines with the Job Splitting Property," Operations Research, INFORMS, vol. 44(4), pages 617-628, August.
    2. Jatinder Gupta & Christos Koulamas & George Kyparisis & Chris Potts & Vitaly Strusevich, 2004. "Scheduling Three-Operation Jobs in a Two-Machine Flow Shop to Minimize Makespan," Annals of Operations Research, Springer, vol. 129(1), pages 171-185, July.
    3. Koulamas, Christos & Kyparisis, George J., 2015. "The three-machine proportionate open shop and mixed shop minimum makespan problems," European Journal of Operational Research, Elsevier, vol. 243(1), pages 70-74.
    4. Egon Balas & Eitan Zemel, 1980. "An Algorithm for Large Zero-One Knapsack Problems," Operations Research, INFORMS, vol. 28(5), pages 1130-1154, October.
    5. Robert McNaughton, 1959. "Scheduling with Deadlines and Loss Functions," Management Science, INFORMS, vol. 6(1), pages 1-12, October.
    6. McClain, John O. & Thomas, L. Joseph & Sox, Charles, 1992. ""On-the-fly" line balancing with very little WIP," International Journal of Production Economics, Elsevier, vol. 27(3), pages 283-289, October.
    7. Ruiz-Torres, Alex J. & Ho, Johnny C. & Ablanedo-Rosas, José H., 2011. "Makespan and workstation utilization minimization in a flowshop with operations flexibility," Omega, Elsevier, vol. 39(3), pages 273-282, June.
    8. Sartaj Sahni, 1979. "Preemptive Scheduling with Due Dates," Operations Research, INFORMS, vol. 27(5), pages 925-934, October.
    9. R L Burdett & E Kozan, 2001. "Sequencing and scheduling in flowshops with task redistribution," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(12), pages 1379-1389, December.
    10. Askin, Ronald G. & Chen, Jiaqiong, 2006. "Dynamic task assignment for throughput maximization with worksharing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 853-869, February.
    11. E. L. Lawler & C. U. Martel, 1989. "Preemptive Scheduling of Two Uniform Machines to Minimize the Number of Late Jobs," Operations Research, INFORMS, vol. 37(2), pages 314-318, April.
    12. N. Brauner & Y. Crama & A. Grigoriev & J. Klundert, 2005. "A Framework for the Complexity of High-Multiplicity Scheduling Problems," Journal of Combinatorial Optimization, Springer, vol. 9(3), pages 313-323, May.
    13. S. M. Johnson, 1954. "Optimal two‐ and three‐stage production schedules with setup times included," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 1(1), pages 61-68, March.
    14. M. R. Garey & D. S. Johnson & Ravi Sethi, 1976. "The Complexity of Flowshop and Jobshop Scheduling," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 117-129, May.
    15. Bultmann, Matthias & Knust, Sigrid & Waldherr, Stefan, 2018. "Synchronous flow shop scheduling with pliable jobs," European Journal of Operational Research, Elsevier, vol. 270(3), pages 943-956.
    16. N. Hefetz & I. Adiri, 1982. "A note on the influence of missing operations on scheduling problems," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 29(3), pages 535-539, September.
    17. Dan Trietsch & Kenneth R. Baker, 1993. "Basic Techniques for Lot Streaming," Operations Research, INFORMS, vol. 41(6), pages 1065-1076, December.
    18. Matthias Bultmann & Sigrid Knust & Stefan Waldherr, 2018. "Flow shop scheduling with flexible processing times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 809-829, July.
    19. Gultekin, Hakan, 2012. "Scheduling in flowshops with flexible operations: Throughput optimization and benefits of flexibility," International Journal of Production Economics, Elsevier, vol. 140(2), pages 900-911.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmadian, Mohammad Mahdi & Khatami, Mostafa & Salehipour, Amir & Cheng, T.C.E., 2021. "Four decades of research on the open-shop scheduling problem to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 295(2), pages 399-426.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthias Bultmann & Sigrid Knust & Stefan Waldherr, 2018. "Flow shop scheduling with flexible processing times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 809-829, July.
    2. Bagchi, Tapan P. & Gupta, Jatinder N.D. & Sriskandarajah, Chelliah, 2006. "A review of TSP based approaches for flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 169(3), pages 816-854, March.
    3. Pan, Quan-Ke & Ruiz, Rubén, 2012. "An estimation of distribution algorithm for lot-streaming flow shop problems with setup times," Omega, Elsevier, vol. 40(2), pages 166-180, April.
    4. Rossit, Daniel A. & Vásquez, Óscar C. & Tohmé, Fernando & Frutos, Mariano & Safe, Martín D., 2021. "A combinatorial analysis of the permutation and non-permutation flow shop scheduling problems," European Journal of Operational Research, Elsevier, vol. 289(3), pages 841-854.
    5. Brammer, Janis & Lutz, Bernhard & Neumann, Dirk, 2022. "Permutation flow shop scheduling with multiple lines and demand plans using reinforcement learning," European Journal of Operational Research, Elsevier, vol. 299(1), pages 75-86.
    6. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    7. Qian, Fubin & Strusevich, Vitaly & Gribkovskaia, Irina & Halskau, Øyvind, 2015. "Minimization of passenger takeoff and landing risk in offshore helicopter transportation: Models, approaches and analysis," Omega, Elsevier, vol. 51(C), pages 93-106.
    8. Byung-Cheon Choi & Joseph Y.-T. Leung & Michael L. Pinedo, 2011. "Minimizing makespan in an ordered flow shop with machine-dependent processing times," Journal of Combinatorial Optimization, Springer, vol. 22(4), pages 797-818, November.
    9. Thierry Garaix & Salim Rostami & Xiaolan Xie, 2020. "Daily outpatient chemotherapy appointment scheduling with random deferrals," Flexible Services and Manufacturing Journal, Springer, vol. 32(1), pages 129-153, March.
    10. Lenstra, J. K. & Rinnooy Kan, A. H. G., 1980. "An Introduction To Multiprocessor Scheduling," Econometric Institute Archives 272258, Erasmus University Rotterdam.
    11. Li, Wei & Nault, Barrie R. & Ye, Honghan, 2019. "Trade-off balancing in scheduling for flow shop production and perioperative processes," European Journal of Operational Research, Elsevier, vol. 273(3), pages 817-830.
    12. Yu, Tae-Sun & Pinedo, Michael, 2020. "Flow shops with reentry: Reversibility properties and makespan optimal schedules," European Journal of Operational Research, Elsevier, vol. 282(2), pages 478-490.
    13. Akiyoshi Shioura & Natalia V. Shakhlevich & Vitaly A. Strusevich, 2020. "Scheduling problems with controllable processing times and a common deadline to minimize maximum compression cost," Journal of Global Optimization, Springer, vol. 76(3), pages 471-490, March.
    14. Ruiz-Torres, Alex J. & Ho, Johnny C. & Ablanedo-Rosas, José H., 2011. "Makespan and workstation utilization minimization in a flowshop with operations flexibility," Omega, Elsevier, vol. 39(3), pages 273-282, June.
    15. Bertrand M. T. Lin & F. J. Hwang & Jatinder N. D. Gupta, 2017. "Two-machine flowshop scheduling with three-operation jobs subject to a fixed job sequence," Journal of Scheduling, Springer, vol. 20(3), pages 293-302, June.
    16. Christoph Hertrich & Christian Weiß & Heiner Ackermann & Sandy Heydrich & Sven O. Krumke, 2020. "Scheduling a proportionate flow shop of batching machines," Journal of Scheduling, Springer, vol. 23(5), pages 575-593, October.
    17. Khatami, Mostafa & Salehipour, Amir & Cheng, T.C.E., 2020. "Coupled task scheduling with exact delays: Literature review and models," European Journal of Operational Research, Elsevier, vol. 282(1), pages 19-39.
    18. Gultekin, Hakan, 2012. "Scheduling in flowshops with flexible operations: Throughput optimization and benefits of flexibility," International Journal of Production Economics, Elsevier, vol. 140(2), pages 900-911.
    19. Timkovsky, Vadim G., 2003. "Identical parallel machines vs. unit-time shops and preemptions vs. chains in scheduling complexity," European Journal of Operational Research, Elsevier, vol. 149(2), pages 355-376, September.
    20. Kameng Nip & Zhenbo Wang & Fabrice Talla Nobibon & Roel Leus, 2015. "A combination of flow shop scheduling and the shortest path problem," Journal of Combinatorial Optimization, Springer, vol. 29(1), pages 36-52, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:22:y:2019:i:6:d:10.1007_s10951-019-00607-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.