IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v76y2020i3d10.1007_s10898-018-0686-2.html
   My bibliography  Save this article

Scheduling problems with controllable processing times and a common deadline to minimize maximum compression cost

Author

Listed:
  • Akiyoshi Shioura

    (Tokyo Institute of Technology)

  • Natalia V. Shakhlevich

    (University of Leeds)

  • Vitaly A. Strusevich

    (University of Greenwich)

Abstract

We consider a range of scheduling problems with controllable processing times, in which the jobs must be completed by a common deadline by compressing appropriately their processing times. The objective is to minimize the maximum compression cost. We present a number of algorithms based on common general principles adapted with a purpose of reducing the resulting running times.

Suggested Citation

  • Akiyoshi Shioura & Natalia V. Shakhlevich & Vitaly A. Strusevich, 2020. "Scheduling problems with controllable processing times and a common deadline to minimize maximum compression cost," Journal of Global Optimization, Springer, vol. 76(3), pages 471-490, March.
  • Handle: RePEc:spr:jglopt:v:76:y:2020:i:3:d:10.1007_s10898-018-0686-2
    DOI: 10.1007/s10898-018-0686-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-018-0686-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-018-0686-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Thomas McCormick, 1999. "Fast Algorithms for Parametric Scheduling Come From Extensions to Parametric Maximum Flow," Operations Research, INFORMS, vol. 47(5), pages 744-756, October.
    2. Robert McNaughton, 1959. "Scheduling with Deadlines and Loss Functions," Management Science, INFORMS, vol. 6(1), pages 1-12, October.
    3. Sartaj Sahni, 1979. "Preemptive Scheduling with Due Dates," Operations Research, INFORMS, vol. 27(5), pages 925-934, October.
    4. A. Federgruen & H. Groenevelt, 1986. "Preemptive Scheduling of Uniform Machines by Ordinary Network Flow Techniques," Management Science, INFORMS, vol. 32(3), pages 341-349, March.
    5. Akiyoshi Shioura & Natalia V. Shakhlevich & Vitaly A. Strusevich, 2016. "Application of Submodular Optimization to Single Machine Scheduling with Controllable Processing Times Subject to Release Dates and Deadlines," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 148-161, February.
    6. W. A. Horn, 1974. "Some simple scheduling algorithms," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 21(1), pages 177-185, March.
    7. Shioura, Akiyoshi & Shakhlevich, Natalia V. & Strusevich, Vitaly A., 2018. "Preemptive models of scheduling with controllable processing times and of scheduling with imprecise computation: A review of solution approaches," European Journal of Operational Research, Elsevier, vol. 266(3), pages 795-818.
    8. Satoru Fujishige, 1980. "Lexicographically Optimal Base of a Polymatroid with Respect to a Weight Vector," Mathematics of Operations Research, INFORMS, vol. 5(2), pages 186-196, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geng, Zhichao & Yuan, Jinjiang, 2023. "Single-machine scheduling of multiple projects with controllable processing times," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1074-1090.
    2. Anton-Sanchez, Laura & Landete, Mercedes & Saldanha-da-Gama, Francisco, 2023. "The discrete p-center location problem with upgrading," Omega, Elsevier, vol. 119(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shioura, Akiyoshi & Shakhlevich, Natalia V. & Strusevich, Vitaly A., 2018. "Preemptive models of scheduling with controllable processing times and of scheduling with imprecise computation: A review of solution approaches," European Journal of Operational Research, Elsevier, vol. 266(3), pages 795-818.
    2. Akiyoshi Shioura & Natalia V. Shakhlevich & Vitaly A. Strusevich, 2017. "Machine Speed Scaling by Adapting Methods for Convex Optimization with Submodular Constraints," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 724-736, November.
    3. Martijn H. H. Schoot Uiterkamp & Marco E. T. Gerards & Johann L. Hurink, 2022. "On a Reduction for a Class of Resource Allocation Problems," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1387-1402, May.
    4. Lenstra, J. K. & Rinnooy Kan, A. H. G., 1980. "An Introduction To Multiprocessor Scheduling," Econometric Institute Archives 272258, Erasmus University Rotterdam.
    5. Akiyoshi Shioura & Natalia V. Shakhlevich & Vitaly A. Strusevich, 2016. "Application of Submodular Optimization to Single Machine Scheduling with Controllable Processing Times Subject to Release Dates and Deadlines," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 148-161, February.
    6. Cheng, T. C. Edwin & Shakhlevich, Natalia V., 2005. "Minimizing non-decreasing separable objective functions for the unit-time open shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 165(2), pages 444-456, September.
    7. Joseph Y.‐T. Leung & Michael Pinedo, 2004. "A note on scheduling parallel machines subject to breakdown and repair," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(1), pages 60-71, February.
    8. Rubing Chen & Jinjiang Yuan & C.T. Ng & T.C.E. Cheng, 2019. "Single‐machine scheduling with deadlines to minimize the total weighted late work," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 582-595, October.
    9. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    10. Sedeno-Noda, A. & Alcaide, D. & Gonzalez-Martin, C., 2006. "Network flow approaches to pre-emptive open-shop scheduling problems with time-windows," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1501-1518, November.
    11. Sedeño-Noda, A. & de Pablo, D. Alcaide López & González-Martín, C., 2009. "A network flow-based method to solve performance cost and makespan open-shop scheduling problems with time-windows," European Journal of Operational Research, Elsevier, vol. 196(1), pages 140-154, July.
    12. Johnny C. Ho & Yih‐Long Chang, 1991. "Heuristics for minimizing mean tardiness for m parallel machines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(3), pages 367-381, June.
    13. Mehdi Ghiyasvand, 2015. "Solving the parametric bipartite maximum flow problem in unbalanced and closure bipartite graphs," Annals of Operations Research, Springer, vol. 229(1), pages 397-408, June.
    14. Mohri, Shintaro & Masuda, Teruo & Ishii, Hiroaki, 1999. "Bi-criteria scheduling problem on three identical parallel machines," International Journal of Production Economics, Elsevier, vol. 60(1), pages 529-536, April.
    15. S. Knust & N. V. Shakhlevich & S. Waldherr & C. Weiß, 2019. "Shop scheduling problems with pliable jobs," Journal of Scheduling, Springer, vol. 22(6), pages 635-661, December.
    16. T.C.E. Cheng & Svetlana A. Kravchenko & Bertrand M.T. Lin, 2017. "Preemptive parallel‐machine scheduling with a common server to minimize makespan," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(5), pages 388-398, August.
    17. Liu Guiqing & Li Kai & Cheng Bayi, 2015. "Preemptive Scheduling with Controllable Processing Times on Parallel Machines," Journal of Systems Science and Information, De Gruyter, vol. 3(1), pages 68-76, February.
    18. Hoogeveen, J. A. & Lenstra, J. K. & Veltman, B., 1996. "Preemptive scheduling in a two-stage multiprocessor flow shop is NP-hard," European Journal of Operational Research, Elsevier, vol. 89(1), pages 172-175, February.
    19. Yung-Chia Chang & Kuei-Hu Chang & Ching-Ping Zheng, 2022. "Application of a Non-Dominated Sorting Genetic Algorithm to Solve a Bi-Objective Scheduling Problem Regarding Printed Circuit Boards," Mathematics, MDPI, vol. 10(13), pages 1-21, July.
    20. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:76:y:2020:i:3:d:10.1007_s10898-018-0686-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.