IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v29y2017i4p724-736.html
   My bibliography  Save this article

Machine Speed Scaling by Adapting Methods for Convex Optimization with Submodular Constraints

Author

Listed:
  • Akiyoshi Shioura

    (Department of Industrial Engineering and Economics, Tokyo Institute of Technology, Tokyo 152, Japan)

  • Natalia V. Shakhlevich

    (School of Computing, University of Leeds, Leeds LS2 9JT, United Kingdom)

  • Vitaly A. Strusevich

    (Department of Mathematical Sciences, University of Greenwich, Old Royal Naval College, London SE10 9LS, United Kingdom)

Abstract

In this paper, we propose a new methodology for the speed-scaling problem based on its link to scheduling with controllable processing times and submodular optimization. It results in faster algorithms for traditional speed-scaling models, characterized by a common speed/energy function. Additionally, it efficiently handles the most general models with job-dependent speed/energy functions with single and multiple machines. To the best of our knowledge, this has not been addressed prior to this study. In particular, the general version of the single-machine case is solvable by the new technique in O ( n 2 ) time.

Suggested Citation

  • Akiyoshi Shioura & Natalia V. Shakhlevich & Vitaly A. Strusevich, 2017. "Machine Speed Scaling by Adapting Methods for Convex Optimization with Submodular Constraints," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 724-736, November.
  • Handle: RePEc:inm:orijoc:v:29:y:2017:i:4:p:724-736
    DOI: 10.1287/ijoc.2017.0758
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2017.0758
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2017.0758?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. Thomas McCormick, 1999. "Fast Algorithms for Parametric Scheduling Come From Extensions to Parametric Maximum Flow," Operations Research, INFORMS, vol. 47(5), pages 744-756, October.
    2. Robert McNaughton, 1959. "Scheduling with Deadlines and Loss Functions," Management Science, INFORMS, vol. 6(1), pages 1-12, October.
    3. Akiyoshi Shioura & Natalia V. Shakhlevich & Vitaly A. Strusevich, 2016. "Application of Submodular Optimization to Single Machine Scheduling with Controllable Processing Times Subject to Release Dates and Deadlines," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 148-161, February.
    4. W. A. Horn, 1974. "Some simple scheduling algorithms," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 21(1), pages 177-185, March.
    5. Hiroaki Ishii & Charles Martel & Teruo Masuda & Toshio Nishida, 1985. "A Generalized Uniform Processor System," Operations Research, INFORMS, vol. 33(2), pages 346-362, April.
    6. Groenevelt, H., 1991. "Two algorithms for maximizing a separable concave function over a polymatroid feasible region," European Journal of Operational Research, Elsevier, vol. 54(2), pages 227-236, September.
    7. Satoru Fujishige, 1980. "Lexicographically Optimal Base of a Polymatroid with Respect to a Weight Vector," Mathematics of Operations Research, INFORMS, vol. 5(2), pages 186-196, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Kononov & Yulia Kovalenko, 2020. "Approximation algorithms for energy-efficient scheduling of parallel jobs," Journal of Scheduling, Springer, vol. 23(6), pages 693-709, December.
    2. Martijn H. H. Schoot Uiterkamp & Marco E. T. Gerards & Johann L. Hurink, 2022. "On a Reduction for a Class of Resource Allocation Problems," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1387-1402, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akiyoshi Shioura & Natalia V. Shakhlevich & Vitaly A. Strusevich, 2020. "Scheduling problems with controllable processing times and a common deadline to minimize maximum compression cost," Journal of Global Optimization, Springer, vol. 76(3), pages 471-490, March.
    2. Shioura, Akiyoshi & Shakhlevich, Natalia V. & Strusevich, Vitaly A., 2018. "Preemptive models of scheduling with controllable processing times and of scheduling with imprecise computation: A review of solution approaches," European Journal of Operational Research, Elsevier, vol. 266(3), pages 795-818.
    3. Martijn H. H. Schoot Uiterkamp & Marco E. T. Gerards & Johann L. Hurink, 2022. "On a Reduction for a Class of Resource Allocation Problems," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1387-1402, May.
    4. Sushil Bikhchandani & Sven de Vries & James Schummer & Rakesh V. Vohra, 2011. "An Ascending Vickrey Auction for Selling Bases of a Matroid," Operations Research, INFORMS, vol. 59(2), pages 400-413, April.
    5. Joseph Y.‐T. Leung & Michael Pinedo, 2004. "A note on scheduling parallel machines subject to breakdown and repair," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(1), pages 60-71, February.
    6. Johnny C. Ho & Yih‐Long Chang, 1991. "Heuristics for minimizing mean tardiness for m parallel machines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(3), pages 367-381, June.
    7. Mehdi Ghiyasvand, 2015. "Solving the parametric bipartite maximum flow problem in unbalanced and closure bipartite graphs," Annals of Operations Research, Springer, vol. 229(1), pages 397-408, June.
    8. T.C.E. Cheng & Svetlana A. Kravchenko & Bertrand M.T. Lin, 2017. "Preemptive parallel‐machine scheduling with a common server to minimize makespan," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(5), pages 388-398, August.
    9. Liu Guiqing & Li Kai & Cheng Bayi, 2015. "Preemptive Scheduling with Controllable Processing Times on Parallel Machines," Journal of Systems Science and Information, De Gruyter, vol. 3(1), pages 68-76, February.
    10. Hoogeveen, J. A. & Lenstra, J. K. & Veltman, B., 1996. "Preemptive scheduling in a two-stage multiprocessor flow shop is NP-hard," European Journal of Operational Research, Elsevier, vol. 89(1), pages 172-175, February.
    11. Yung-Chia Chang & Kuei-Hu Chang & Ching-Ping Zheng, 2022. "Application of a Non-Dominated Sorting Genetic Algorithm to Solve a Bi-Objective Scheduling Problem Regarding Printed Circuit Boards," Mathematics, MDPI, vol. 10(13), pages 1-21, July.
    12. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    13. Scholl, Armin & Becker, Christian, 2006. "State-of-the-art exact and heuristic solution procedures for simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 666-693, February.
    14. Leah Epstein, 2023. "Parallel solutions for preemptive makespan scheduling on two identical machines," Journal of Scheduling, Springer, vol. 26(1), pages 61-76, February.
    15. Han, Bin & Zhang, Wenjun & Lu, Xiwen & Lin, Yingzi, 2015. "On-line supply chain scheduling for single-machine and parallel-machine configurations with a single customer: Minimizing the makespan and delivery cost," European Journal of Operational Research, Elsevier, vol. 244(3), pages 704-714.
    16. Alexander Grigoriev & Martijn Holthuijsen & Joris van de Klundert, 2005. "Basic scheduling problems with raw material constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(6), pages 527-535, September.
    17. Chen, Lin & Ye, Deshi & Zhang, Guochuan, 2018. "Parallel machine scheduling with speed-up resources," European Journal of Operational Research, Elsevier, vol. 268(1), pages 101-112.
    18. Xu, Jun & Wang, Jun-Qiang & Liu, Zhixin, 2022. "Parallel batch scheduling: Impact of increasing machine capacity," Omega, Elsevier, vol. 108(C).
    19. Zeynep Adak & Mahmure Övül Arıoğlu Akan & Serol Bulkan, 0. "Multiprocessor open shop problem: literature review and future directions," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-23.
    20. Jacques Carlier & Claire Hanen, 2024. "Measuring the slack between lower bounds for scheduling on parallel machines," Annals of Operations Research, Springer, vol. 338(1), pages 347-377, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:29:y:2017:i:4:p:724-736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.