IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v264y2018i1p212-224.html
   My bibliography  Save this article

Quantile regression metamodeling: Toward improved responsiveness in the high-tech electronics manufacturing industry

Author

Listed:
  • Batur, Demet
  • Bekki, Jennifer M.
  • Chen, Xi

Abstract

Both technology and market demands within the high-tech electronics manufacturing industry change rapidly. Accurate and efficient estimation of cycle-time (CT) distribution remains a critical driver of on-time delivery and associated customer satisfaction metrics in these complex manufacturing systems. Simulation models are often used to emulate these systems in order to estimate parameters of the CT distribution. However, execution time of such simulation models can be excessively long limiting the number of simulation runs that can be executed for quantifying the impact of potential future operational changes. One solution is the use of simulation metamodeling which is to build a closed-form mathematical expression to approximate the input–output relationship implied by the simulation model based on simulation experiments run at selected design points in advance. Metamodels can be easily evaluated in a spreadsheet environment “on demand” to answer what-if questions without needing to run lengthy simulations. The majority of previous simulation metamodeling approaches have focused on estimating mean CT as a function of a single input variable (i.e., throughput). In this paper, we demonstrate the feasibility of a quantile regression based metamodeling approach. This method allows estimation of CT quantiles as a function of multiple input variables (e.g., throughput, product mix, and various distributional parameters of time-between-failures, repair time, setup time, loading and unloading times). Empirical results are provided to demonstrate the efficacy of the approach in a realistic simulation model representative of a semiconductor manufacturing system.

Suggested Citation

  • Batur, Demet & Bekki, Jennifer M. & Chen, Xi, 2018. "Quantile regression metamodeling: Toward improved responsiveness in the high-tech electronics manufacturing industry," European Journal of Operational Research, Elsevier, vol. 264(1), pages 212-224.
  • Handle: RePEc:eee:ejores:v:264:y:2018:i:1:p:212-224
    DOI: 10.1016/j.ejor.2017.06.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717305386
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.06.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yiwei Cai & Erhan Kutanoglu & John Hasenbein, 2011. "Production Planning and Scheduling: Interaction and Coordination," International Series in Operations Research & Management Science, in: Karl G Kempf & Pınar Keskinocak & Reha Uzsoy (ed.), Planning Production and Inventories in the Extended Enterprise, chapter 0, pages 15-42, Springer.
    2. Erjie Ang & Sara Kwasnick & Mohsen Bayati & Erica L. Plambeck & Michael Aratow, 2016. "Accurate Emergency Department Wait Time Prediction," Manufacturing & Service Operations Management, INFORMS, vol. 18(1), pages 141-156, February.
    3. Xi Chen & Kyoung-Kuk Kim, 2016. "Efficient VaR and CVaR Measurement via Stochastic Kriging," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 629-644, November.
    4. Nan Chen & Shiyu Zhou, 2011. "Simulation-based estimation of cycle time using quantile regression," IISE Transactions, Taylor & Francis Journals, vol. 43(3), pages 176-191.
    5. Chen, E. Jack & Kelton, W. David, 2006. "Quantile and tolerance-interval estimation in simulation," European Journal of Operational Research, Elsevier, vol. 168(2), pages 520-540, January.
    6. Yang, Feng, 2010. "Neural network metamodeling for cycle time-throughput profiles in manufacturing," European Journal of Operational Research, Elsevier, vol. 205(1), pages 172-185, August.
    7. Zümbül Atan & Ton de Kok & Nico P. Dellaert & Richard van Boxel & Fred Janssen, 2016. "Setting Planned Leadtimes in Customer-Order-Driven Assembly Systems," Manufacturing & Service Operations Management, INFORMS, vol. 18(1), pages 122-140, February.
    8. Sungmin Park & John W. Fowler & Gerald T. Mackulak & J. Bert Keats & W. Matthew Carlyle, 2002. "D-Optimal Sequential Experiments for Generating a Simulation-Based Cycle Time-Throughput Curve," Operations Research, INFORMS, vol. 50(6), pages 981-990, December.
    9. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, September.
    10. Feng Yang & Bruce E. Ankenman & Barry L. Nelson, 2008. "Estimating Cycle Time Percentile Curves for Manufacturing Systems via Simulation," INFORMS Journal on Computing, INFORMS, vol. 20(4), pages 628-643, November.
    11. Xing Jin & Michael C. Fu & Xiaoping Xiong, 2003. "Probabilistic Error Bounds for Simulation Quantile Estimators," Management Science, INFORMS, vol. 49(2), pages 230-246, February.
    12. Bruce E. Ankenman & Jennifer M. Bekki & John Fowler & Gerald T. Mackulak & Barry L. Nelson & Feng Yang, 2011. "Simulation in Production Planning: An Overview with Emphasis on Recent Developments in Cycle Time Estimation," International Series in Operations Research & Management Science, in: Karl G. Kempf & Pınar Keskinocak & Reha Uzsoy (ed.), Planning Production and Inventories in the Extended Enterprise, chapter 0, pages 565-591, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mansouri, S. Afshin & Golmohammadi, Davood & Miller, Jason, 2019. "The moderating role of master production scheduling method on throughput in job shop systems," International Journal of Production Economics, Elsevier, vol. 216(C), pages 67-80.
    2. Brandt, Tobias & Wagner, Sebastian & Neumann, Dirk, 2021. "Prescriptive analytics in public-sector decision-making: A framework and insights from charging infrastructure planning," European Journal of Operational Research, Elsevier, vol. 291(1), pages 379-393.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xi & Zhou, Qiang, 2017. "Sequential design strategies for mean response surface metamodeling via stochastic kriging with adaptive exploration and exploitation," European Journal of Operational Research, Elsevier, vol. 262(2), pages 575-585.
    2. Christos Alexopoulos & David Goldsman & Anup C. Mokashi & Kai-Wen Tien & James R. Wilson, 2019. "Sequest: A Sequential Procedure for Estimating Quantiles in Steady-State Simulations," Operations Research, INFORMS, vol. 67(4), pages 1162-1183, July.
    3. Cannella, Salvatore & Dominguez, Roberto & Ponte, Borja & Framinan, Jose M., 2018. "Capacity restrictions and supply chain performance: Modelling and analysing load-dependent lead times," International Journal of Production Economics, Elsevier, vol. 204(C), pages 264-277.
    4. Demet Batur & F. Fred Choobineh, 2021. "Selecting the Best Alternative Based on Its Quantile," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 657-671, May.
    5. Jérémie Gallien & Alan Scheller-Wolf, 2016. "Introduction to the Special Issue on Practice-Focused Research," Manufacturing & Service Operations Management, INFORMS, vol. 18(1), pages 1-4, February.
    6. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
    7. Benjamin Hofner & Andreas Mayr & Nikolay Robinzonov & Matthias Schmid, 2014. "Model-based boosting in R: a hands-on tutorial using the R package mboost," Computational Statistics, Springer, vol. 29(1), pages 3-35, February.
    8. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    9. Muller, Christophe, 2018. "Heterogeneity and nonconstant effect in two-stage quantile regression," Econometrics and Statistics, Elsevier, vol. 8(C), pages 3-12.
    10. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    11. Narisetty, Naveen & Koenker, Roger, 2022. "Censored quantile regression survival models with a cure proportion," Journal of Econometrics, Elsevier, vol. 226(1), pages 192-203.
    12. Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
    13. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    14. Klaus Friesenbichler, 2013. "Firm Growth in Conflict Countries: Some Evidence from South Asia," Review of Economics & Finance, Better Advances Press, Canada, vol. 3, pages 33-44, May.
    15. Chesher, Andrew, 2017. "Understanding the effect of measurement error on quantile regressions," Journal of Econometrics, Elsevier, vol. 200(2), pages 223-237.
    16. Park, Beum-Jo & Kim, Myung-Joong, 2017. "A Dynamic Measure of Intentional Herd Behavior in Financial Markets," MPRA Paper 82025, University Library of Munich, Germany.
    17. de Chaisemartin, Clement & D'Haultfoeuille, Xavier, "undated". "Supplement to Fuzzy Differences-in-Differences," Economic Research Papers 270217, University of Warwick - Department of Economics.
    18. Andrés Barge-Gil & Alberto López, 2015. "R versus D: estimating the differentiated effect of research and development on innovation results," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 24(1), pages 93-129.
    19. Kleopatra Nikolaou, 2007. "The behaviour of the real exchange rate: Evidence from regression quantiles," Money Macro and Finance (MMF) Research Group Conference 2006 46, Money Macro and Finance Research Group.
    20. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:264:y:2018:i:1:p:212-224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.