IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v264y2018i1p212-224.html
   My bibliography  Save this article

Quantile regression metamodeling: Toward improved responsiveness in the high-tech electronics manufacturing industry

Author

Listed:
  • Batur, Demet
  • Bekki, Jennifer M.
  • Chen, Xi

Abstract

Both technology and market demands within the high-tech electronics manufacturing industry change rapidly. Accurate and efficient estimation of cycle-time (CT) distribution remains a critical driver of on-time delivery and associated customer satisfaction metrics in these complex manufacturing systems. Simulation models are often used to emulate these systems in order to estimate parameters of the CT distribution. However, execution time of such simulation models can be excessively long limiting the number of simulation runs that can be executed for quantifying the impact of potential future operational changes. One solution is the use of simulation metamodeling which is to build a closed-form mathematical expression to approximate the input–output relationship implied by the simulation model based on simulation experiments run at selected design points in advance. Metamodels can be easily evaluated in a spreadsheet environment “on demand” to answer what-if questions without needing to run lengthy simulations. The majority of previous simulation metamodeling approaches have focused on estimating mean CT as a function of a single input variable (i.e., throughput). In this paper, we demonstrate the feasibility of a quantile regression based metamodeling approach. This method allows estimation of CT quantiles as a function of multiple input variables (e.g., throughput, product mix, and various distributional parameters of time-between-failures, repair time, setup time, loading and unloading times). Empirical results are provided to demonstrate the efficacy of the approach in a realistic simulation model representative of a semiconductor manufacturing system.

Suggested Citation

  • Batur, Demet & Bekki, Jennifer M. & Chen, Xi, 2018. "Quantile regression metamodeling: Toward improved responsiveness in the high-tech electronics manufacturing industry," European Journal of Operational Research, Elsevier, vol. 264(1), pages 212-224.
  • Handle: RePEc:eee:ejores:v:264:y:2018:i:1:p:212-224
    DOI: 10.1016/j.ejor.2017.06.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717305386
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.06.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yiwei Cai & Erhan Kutanoglu & John Hasenbein, 2011. "Production Planning and Scheduling: Interaction and Coordination," International Series in Operations Research & Management Science, in: Karl G Kempf & Pınar Keskinocak & Reha Uzsoy (ed.), Planning Production and Inventories in the Extended Enterprise, chapter 0, pages 15-42, Springer.
    2. Erjie Ang & Sara Kwasnick & Mohsen Bayati & Erica L. Plambeck & Michael Aratow, 2016. "Accurate Emergency Department Wait Time Prediction," Manufacturing & Service Operations Management, INFORMS, vol. 18(1), pages 141-156, February.
    3. Xi Chen & Kyoung-Kuk Kim, 2016. "Efficient VaR and CVaR Measurement via Stochastic Kriging," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 629-644, November.
    4. Nan Chen & Shiyu Zhou, 2011. "Simulation-based estimation of cycle time using quantile regression," IISE Transactions, Taylor & Francis Journals, vol. 43(3), pages 176-191.
    5. Chen, E. Jack & Kelton, W. David, 2006. "Quantile and tolerance-interval estimation in simulation," European Journal of Operational Research, Elsevier, vol. 168(2), pages 520-540, January.
    6. Yang, Feng, 2010. "Neural network metamodeling for cycle time-throughput profiles in manufacturing," European Journal of Operational Research, Elsevier, vol. 205(1), pages 172-185, August.
    7. Zümbül Atan & Ton de Kok & Nico P. Dellaert & Richard van Boxel & Fred Janssen, 2016. "Setting Planned Leadtimes in Customer-Order-Driven Assembly Systems," Manufacturing & Service Operations Management, INFORMS, vol. 18(1), pages 122-140, February.
    8. Sungmin Park & John W. Fowler & Gerald T. Mackulak & J. Bert Keats & W. Matthew Carlyle, 2002. "D-Optimal Sequential Experiments for Generating a Simulation-Based Cycle Time-Throughput Curve," Operations Research, INFORMS, vol. 50(6), pages 981-990, December.
    9. repec:cup:cbooks:9780521608275 is not listed on IDEAS
    10. Feng Yang & Bruce E. Ankenman & Barry L. Nelson, 2008. "Estimating Cycle Time Percentile Curves for Manufacturing Systems via Simulation," INFORMS Journal on Computing, INFORMS, vol. 20(4), pages 628-643, November.
    11. repec:cup:cbooks:9780521845731 is not listed on IDEAS
    12. Xing Jin & Michael C. Fu & Xiaoping Xiong, 2003. "Probabilistic Error Bounds for Simulation Quantile Estimators," Management Science, INFORMS, vol. 49(2), pages 230-246, February.
    13. Bruce E. Ankenman & Jennifer M. Bekki & John Fowler & Gerald T. Mackulak & Barry L. Nelson & Feng Yang, 2011. "Simulation in Production Planning: An Overview with Emphasis on Recent Developments in Cycle Time Estimation," International Series in Operations Research & Management Science, in: Karl G. Kempf & Pınar Keskinocak & Reha Uzsoy (ed.), Planning Production and Inventories in the Extended Enterprise, chapter 0, pages 565-591, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mansouri, S. Afshin & Golmohammadi, Davood & Miller, Jason, 2019. "The moderating role of master production scheduling method on throughput in job shop systems," International Journal of Production Economics, Elsevier, vol. 216(C), pages 67-80.
    2. Brandt, Tobias & Wagner, Sebastian & Neumann, Dirk, 2021. "Prescriptive analytics in public-sector decision-making: A framework and insights from charging infrastructure planning," European Journal of Operational Research, Elsevier, vol. 291(1), pages 379-393.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christos Alexopoulos & David Goldsman & Anup C. Mokashi & Kai-Wen Tien & James R. Wilson, 2019. "Sequest: A Sequential Procedure for Estimating Quantiles in Steady-State Simulations," Operations Research, INFORMS, vol. 67(4), pages 1162-1183, July.
    2. Demet Batur & F. Fred Choobineh, 2021. "Selecting the Best Alternative Based on Its Quantile," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 657-671, May.
    3. Chen, Xi & Zhou, Qiang, 2017. "Sequential design strategies for mean response surface metamodeling via stochastic kriging with adaptive exploration and exploitation," European Journal of Operational Research, Elsevier, vol. 262(2), pages 575-585.
    4. Jérémie Gallien & Alan Scheller-Wolf, 2016. "Introduction to the Special Issue on Practice-Focused Research," Manufacturing & Service Operations Management, INFORMS, vol. 18(1), pages 1-4, February.
    5. Cannella, Salvatore & Dominguez, Roberto & Ponte, Borja & Framinan, Jose M., 2018. "Capacity restrictions and supply chain performance: Modelling and analysing load-dependent lead times," International Journal of Production Economics, Elsevier, vol. 204(C), pages 264-277.
    6. Jung, Seung Hwan & Yang, Yunsi, 2023. "On the value of operational flexibility in the trailer shipment and assignment problem: Data-driven approaches and reinforcement learning," International Journal of Production Economics, Elsevier, vol. 264(C).
    7. Jing Dong & Elad Yom-Tov & Galit B. Yom-Tov, 2019. "The Impact of Delay Announcements on Hospital Network Coordination and Waiting Times," Management Science, INFORMS, vol. 67(5), pages 1969-1994, May.
    8. Batur, D. & Choobineh, F., 2010. "A quantile-based approach to system selection," European Journal of Operational Research, Elsevier, vol. 202(3), pages 764-772, May.
    9. Rouba Ibrahim & Mor Armony & Achal Bassamboo, 2017. "Does the Past Predict the Future? The Case of Delay Announcements in Service Systems," Management Science, INFORMS, vol. 63(6), pages 1762-1780, June.
    10. Jun Li & Serguei Netessine & Sergei Koulayev, 2018. "Price to Compete … with Many: How to Identify Price Competition in High-Dimensional Space," Management Science, INFORMS, vol. 64(9), pages 4118-4136, September.
    11. Songhao Wang & Szu Hui Ng & William Benjamin Haskell, 2022. "A Multilevel Simulation Optimization Approach for Quantile Functions," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 569-585, January.
    12. Tinglong Dai & Sridhar Tayur, 2020. "OM Forum—Healthcare Operations Management: A Snapshot of Emerging Research," Manufacturing & Service Operations Management, INFORMS, vol. 22(5), pages 869-887, September.
    13. Kleijnen, Jack P.C., 2009. "Kriging metamodeling in simulation: A review," European Journal of Operational Research, Elsevier, vol. 192(3), pages 707-716, February.
    14. Taher Ahmadi & Zümbül Atan & Ton de Kok & Ivo Adan, 2019. "Optimal control policies for an inventory system with commitment lead time," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(3), pages 193-212, April.
    15. Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
    16. Nan Liu & Stacey R. Finkelstein & Margaret E. Kruk & David Rosenthal, 2018. "When Waiting to See a Doctor Is Less Irritating: Understanding Patient Preferences and Choice Behavior in Appointment Scheduling," Management Science, INFORMS, vol. 64(5), pages 1975-1996, May.
    17. Jerry Anunrojwong & Krishnamurthy Iyer & Vahideh Manshadi, 2023. "Information Design for Congested Social Services: Optimal Need-Based Persuasion," Management Science, INFORMS, vol. 69(7), pages 3778-3796, July.
    18. Xi Chen & Kyoung-Kuk Kim, 2016. "Efficient VaR and CVaR Measurement via Stochastic Kriging," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 629-644, November.
    19. J P C Kleijnen & W C M van Beers, 2013. "Monotonicity-preserving bootstrapped Kriging metamodels for expensive simulations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(5), pages 708-717, May.
    20. Phillip O. Kriett & Sebastian Eirich & Martin Grunow, 2017. "Cycle time-oriented mid-term production planning for semiconductor wafer fabrication," International Journal of Production Research, Taylor & Francis Journals, vol. 55(16), pages 4662-4679, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:264:y:2018:i:1:p:212-224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.