IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v255y2016i3p922-934.html
   My bibliography  Save this article

An enhanced logarithmic method for signomial programming with discrete variables

Author

Listed:
  • Li, Han-Lin
  • Fang, Shu-Cherng
  • Huang, Yao-Huei
  • Nie, Tiantian

Abstract

Signomial programming problems with discrete variables (SPD) appear widely in real-life applications, but they are hard to solve. This paper proposes an enhanced logarithmic method to reformulate the SPD problem as a mixed 0-1 linear program (MILP) with a minimum number of binary variables and inequality constraints. Both of the theoretical analysis and numerical results strongly support its superior performance to other state-of-the-art linearization methods. We also extend the proposed method to linearize some more complicated problems involving product and fractional terms in discrete and continuous variables.

Suggested Citation

  • Li, Han-Lin & Fang, Shu-Cherng & Huang, Yao-Huei & Nie, Tiantian, 2016. "An enhanced logarithmic method for signomial programming with discrete variables," European Journal of Operational Research, Elsevier, vol. 255(3), pages 922-934.
  • Handle: RePEc:eee:ejores:v:255:y:2016:i:3:p:922-934
    DOI: 10.1016/j.ejor.2016.05.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716304179
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.05.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Warren P. Adams & Stephen M. Henry, 2012. "Base-2 Expansions for Linearizing Products of Functions of Discrete Variables," Operations Research, INFORMS, vol. 60(6), pages 1477-1490, December.
    2. Shin-yi Wu & Lorin M. Hitt & Pei-yu Chen & G. Anandalingam, 2008. "Customized Bundle Pricing for Information Goods: A Nonlinear Mixed-Integer Programming Approach," Management Science, INFORMS, vol. 54(3), pages 608-622, March.
    3. Fred Glover, 1975. "Surrogate Constraint Duality in Mathematical Programming," Operations Research, INFORMS, vol. 23(3), pages 434-451, June.
    4. Ossama Kettani & Muhittin Oral, 1990. "Equivalent Formulations of Nonlinear Integer Problems for Efficient Optimization," Management Science, INFORMS, vol. 36(1), pages 115-119, January.
    5. Han-Lin Li & Yao-Huei Huang & Shu-Cherng Fang, 2013. "A Logarithmic Method for Reducing Binary Variables and Inequality Constraints in Solving Task Assignment Problems," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 643-653, November.
    6. Mohit Tawarmalani & Karthik Kannan & Prabuddha De, 2009. "Allocating Objects in a Network of Caches: Centralized and Decentralized Analyses," Management Science, INFORMS, vol. 55(1), pages 132-147, January.
    7. Juan Pablo Vielma & Shabbir Ahmed & George Nemhauser, 2010. "Mixed-Integer Models for Nonseparable Piecewise-Linear Optimization: Unifying Framework and Extensions," Operations Research, INFORMS, vol. 58(2), pages 303-315, April.
    8. Mustafa Akan & Oguzhan Alagoz & Baris Ata & Fatih Safa Erenay & Adnan Said, 2012. "A Broader View of Designing the Liver Allocation System," Operations Research, INFORMS, vol. 60(4), pages 757-770, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. F. J. Hwang & Yao-Huei Huang, 2021. "An effective logarithmic formulation for piecewise linearization requiring no inequality constraint," Computational Optimization and Applications, Springer, vol. 79(3), pages 601-631, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han-Lin Li & Yao-Huei Huang & Shu-Cherng Fang, 2017. "Linear Reformulation of Polynomial Discrete Programming for Fast Computation," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 108-122, February.
    2. Scott J. Davis & Shatiel B. Edwards & Gerald E. Teper & David G. Bassett & Michael J. McCarthy & Scott C. Johnson & Craig R. Lawton & Matthew J. Hoffman & Liliana Shelton & Stephen M. Henry & Darryl J, 2016. "Maximizing the U.S. Army’s Future Contribution to Global Security Using the Capability Portfolio Analysis Tool (CPAT)," Interfaces, INFORMS, vol. 46(1), pages 91-108, February.
    3. Joey Huchette & Joey Huchette, 2019. "A Combinatorial Approach for Small and Strong Formulations of Disjunctive Constraints," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 793-820, August.
    4. F. J. Hwang & Yao-Huei Huang, 2021. "An effective logarithmic formulation for piecewise linearization requiring no inequality constraint," Computational Optimization and Applications, Springer, vol. 79(3), pages 601-631, July.
    5. Fang Yang & Yao-Huei Huang, 2021. "An optimization approach for winner determination problem considering transportation cost discounts," Journal of Global Optimization, Springer, vol. 80(3), pages 711-728, July.
    6. Han-Lin Li & Yao-Huei Huang & Shu-Cherng Fang, 2013. "A Logarithmic Method for Reducing Binary Variables and Inequality Constraints in Solving Task Assignment Problems," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 643-653, November.
    7. Qi An & Shu-Cherng Fang & Tiantian Nie & Shan Jiang, 2018. "$$\ell _1$$ ℓ 1 -Norm Based Central Point Analysis for Asymmetric Radial Data," Annals of Data Science, Springer, vol. 5(3), pages 469-486, September.
    8. Codas, Andrés & Camponogara, Eduardo, 2012. "Mixed-integer linear optimization for optimal lift-gas allocation with well-separator routing," European Journal of Operational Research, Elsevier, vol. 217(1), pages 222-231.
    9. Christensen, Tue R.L. & Labbé, Martine, 2015. "A branch-cut-and-price algorithm for the piecewise linear transportation problem," European Journal of Operational Research, Elsevier, vol. 245(3), pages 645-655.
    10. Jon Lee & Daphne Skipper & Emily Speakman & Luze Xu, 2023. "Gaining or Losing Perspective for Piecewise-Linear Under-Estimators of Convex Univariate Functions," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 1-35, January.
    11. John N. Hooker, 2002. "Logic, Optimization, and Constraint Programming," INFORMS Journal on Computing, INFORMS, vol. 14(4), pages 295-321, November.
    12. Ritwik Raj & Mark H. Karwan & Chase Murray & Lei Sun, 2022. "Itemized pricing in B2B bundles with diminishing reservation prices and loss averse customers," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 21(4), pages 375-392, August.
    13. David Simchi-Levi & Rui Sun & Huanan Zhang, 2022. "Online Learning and Optimization for Revenue Management Problems with Add-on Discounts," Management Science, INFORMS, vol. 68(10), pages 7402-7421, October.
    14. Renaud Chicoisne, 2023. "Computational aspects of column generation for nonlinear and conic optimization: classical and linearized schemes," Computational Optimization and Applications, Springer, vol. 84(3), pages 789-831, April.
    15. Huang, Yeu-Shiang & Ho, Jyh-Wen & Wu, Guan-Jin, 2022. "A study on promotion with strategic two-stage customized bundling," Journal of Retailing and Consumer Services, Elsevier, vol. 68(C).
    16. Baris Ata & Yichuan Ding & Stefanos Zenios, 2021. "An Achievable-Region-Based Approach for Kidney Allocation Policy Design with Endogenous Patient Choice," Manufacturing & Service Operations Management, INFORMS, vol. 23(1), pages 36-54, 1-2.
    17. Li, Jianbin & Liu, Lang & Luo, Xiaomeng & Zhu, Stuart X., 2023. "Interactive bundle pricing strategy for online pharmacies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    18. Hadi Bidhandi, 2006. "A new approach based on the surrogating method in the project time compression problems," Annals of Operations Research, Springer, vol. 143(1), pages 237-250, March.
    19. Wei, Tangjian & Batley, Richard & Liu, Ronghui & Xu, Guangming & Tang, Yili, 2024. "A method of time-varying demand distribution estimation for high-speed railway networks with user equilibrium model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
    20. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Zhang, Yi & Zhao, Zhipeng & Lu, Jia, 2022. "Wasserstein metric-based two-stage distributionally robust optimization model for optimal daily peak shaving dispatch of cascade hydroplants under renewable energy uncertainties," Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:255:y:2016:i:3:p:922-934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.