IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v60y2012i6p1477-1490.html
   My bibliography  Save this article

Base-2 Expansions for Linearizing Products of Functions of Discrete Variables

Author

Listed:
  • Warren P. Adams

    (Department of Mathematical Sciences, Clemson University, Clemson, South Carolina 29634)

  • Stephen M. Henry

    (System Readiness and Sustainment Technologies Group, Sandia National Laboratories, Albuquerque, New Mexico 87123)

Abstract

This paper presents an approach for representing functions of discrete variables, and their products, using logarithmic numbers of binary variables. Given a univariate function whose domain consists of n distinct values, it begins by employing a base-2 expansion to express the function in terms of the ceiling of log 2 n binary and n continuous variables, using linear restrictions to equate the functional values with the possible binary realizations. The representation of the product of such a function with a nonnegative variable is handled via an appropriate scaling of the linear restrictions. Products of m functions are treated in an inductive manner from i = 2 to m , where each step i uses such a scaling to express the product of function i and a nonnegative variable denoting a translated version of the product of functions 1 through i - 1 as a newly defined variable. The resulting representations, both in terms of one function and many, are important for reformulating general discrete variables as binary, and also for linearizing mixed-integer generalized geometric and discrete nonlinear programs, where it is desired to economize on the number of binary variables. The approach provides insight into, improves upon, and subsumes related linearization methods for products of functions of discrete variables.

Suggested Citation

  • Warren P. Adams & Stephen M. Henry, 2012. "Base-2 Expansions for Linearizing Products of Functions of Discrete Variables," Operations Research, INFORMS, vol. 60(6), pages 1477-1490, December.
  • Handle: RePEc:inm:oropre:v:60:y:2012:i:6:p:1477-1490
    DOI: 10.1287/opre.1120.1106
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1120.1106
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1120.1106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stephen P. Boyd & Seung-Jean Kim & Dinesh D. Patil & Mark A. Horowitz, 2005. "Digital Circuit Optimization via Geometric Programming," Operations Research, INFORMS, vol. 53(6), pages 899-932, December.
    2. Lawrence J. Watters, 1967. "Letter to the Editor—Reduction of Integer Polynomial Programming Problems to Zero-One Linear Programming Problems," Operations Research, INFORMS, vol. 15(6), pages 1171-1174, December.
    3. Han-Lin Li & Hao-Chun Lu, 2009. "Global Optimization for Generalized Geometric Programs with Mixed Free-Sign Variables," Operations Research, INFORMS, vol. 57(3), pages 701-713, June.
    4. Fred Glover, 1975. "Improved Linear Integer Programming Formulations of Nonlinear Integer Problems," Management Science, INFORMS, vol. 22(4), pages 455-460, December.
    5. Han-Lin Li & Hao-Chun Lu & Chia-Hui Huang & Nian-Ze Hu, 2009. "A Superior Representation Method for Piecewise Linear Functions," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 314-321, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Han-Lin & Fang, Shu-Cherng & Huang, Yao-Huei & Nie, Tiantian, 2016. "An enhanced logarithmic method for signomial programming with discrete variables," European Journal of Operational Research, Elsevier, vol. 255(3), pages 922-934.
    2. M. Hosein Zare & Juan S. Borrero & Bo Zeng & Oleg A. Prokopyev, 2019. "A note on linearized reformulations for a class of bilevel linear integer problems," Annals of Operations Research, Springer, vol. 272(1), pages 99-117, January.
    3. Juan S. Borrero & Colin Gillen & Oleg A. Prokopyev, 2017. "Fractional 0–1 programming: applications and algorithms," Journal of Global Optimization, Springer, vol. 69(1), pages 255-282, September.
    4. Fang Yang & Yao-Huei Huang, 2021. "An optimization approach for winner determination problem considering transportation cost discounts," Journal of Global Optimization, Springer, vol. 80(3), pages 711-728, July.
    5. Qi An & Shu-Cherng Fang & Tiantian Nie & Shan Jiang, 2018. "$$\ell _1$$ ℓ 1 -Norm Based Central Point Analysis for Asymmetric Radial Data," Annals of Data Science, Springer, vol. 5(3), pages 469-486, September.
    6. Hao-Chun Lu, 2017. "Improved logarithmic linearizing method for optimization problems with free-sign pure discrete signomial terms," Journal of Global Optimization, Springer, vol. 68(1), pages 95-123, May.
    7. Lu, Yiping & Chen, Danny Z., 2021. "A new exact algorithm for the Weapon-Target Assignment problem," Omega, Elsevier, vol. 98(C).
    8. Scott J. Davis & Shatiel B. Edwards & Gerald E. Teper & David G. Bassett & Michael J. McCarthy & Scott C. Johnson & Craig R. Lawton & Matthew J. Hoffman & Liliana Shelton & Stephen M. Henry & Darryl J, 2016. "Maximizing the U.S. Army’s Future Contribution to Global Security Using the Capability Portfolio Analysis Tool (CPAT)," Interfaces, INFORMS, vol. 46(1), pages 91-108, February.
    9. Joey Huchette & Joey Huchette, 2019. "A Combinatorial Approach for Small and Strong Formulations of Disjunctive Constraints," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 793-820, August.
    10. Han-Lin Li & Yao-Huei Huang & Shu-Cherng Fang, 2017. "Linear Reformulation of Polynomial Discrete Programming for Fast Computation," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 108-122, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao-Chun Lu & Liming Yao, 2019. "Efficient Convexification Strategy for Generalized Geometric Programming Problems," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 226-234, April.
    2. Lu, Hao-Chun, 2020. "Indicator of power convex and exponential transformations for solving nonlinear problems containing posynomial terms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    3. Han-Lin Li & Yao-Huei Huang & Shu-Cherng Fang, 2017. "Linear Reformulation of Polynomial Discrete Programming for Fast Computation," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 108-122, February.
    4. Sven Mallach, 2018. "Compact linearization for binary quadratic problems subject to assignment constraints," 4OR, Springer, vol. 16(3), pages 295-309, September.
    5. Lin, Ming-Hua & Tsai, Jung-Fa, 2012. "Range reduction techniques for improving computational efficiency in global optimization of signomial geometric programming problems," European Journal of Operational Research, Elsevier, vol. 216(1), pages 17-25.
    6. M. Hosein Zare & Juan S. Borrero & Bo Zeng & Oleg A. Prokopyev, 2019. "A note on linearized reformulations for a class of bilevel linear integer problems," Annals of Operations Research, Springer, vol. 272(1), pages 99-117, January.
    7. Warren Adams & Hanif Sherali, 2005. "A Hierarchy of Relaxations Leading to the Convex Hull Representation for General Discrete Optimization Problems," Annals of Operations Research, Springer, vol. 140(1), pages 21-47, November.
    8. Han-Lin Li & Yao-Huei Huang & Shu-Cherng Fang, 2013. "A Logarithmic Method for Reducing Binary Variables and Inequality Constraints in Solving Task Assignment Problems," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 643-653, November.
    9. Juan S. Borrero & Colin Gillen & Oleg A. Prokopyev, 2017. "Fractional 0–1 programming: applications and algorithms," Journal of Global Optimization, Springer, vol. 69(1), pages 255-282, September.
    10. Mamadou Koné & Mouhamadou A.M.T. Baldé & Babacar M. Ndiaye, 2019. "A Dichotomic Algorithm for Transportation Network and Land Use Problem," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 11(1), pages 42-56, February.
    11. Hao-Chun Lu, 2017. "Improved logarithmic linearizing method for optimization problems with free-sign pure discrete signomial terms," Journal of Global Optimization, Springer, vol. 68(1), pages 95-123, May.
    12. Buchheim, Christoph & Crama, Yves & Rodríguez-Heck, Elisabeth, 2019. "Berge-acyclic multilinear 0–1 optimization problems," European Journal of Operational Research, Elsevier, vol. 273(1), pages 102-107.
    13. Yokoyama, Ryohei & Kitano, Hiroyuki & Wakui, Tetsuya, 2017. "Optimal operation of heat supply systems with piping network," Energy, Elsevier, vol. 137(C), pages 888-897.
    14. Tian, Xueyu & You, Fengqi, 2019. "Carbon-neutral hybrid energy systems with deep water source cooling, biomass heating, and geothermal heat and power," Applied Energy, Elsevier, vol. 250(C), pages 413-432.
    15. Longinidis, Pantelis & Georgiadis, Michael C., 2014. "Integration of sale and leaseback in the optimal design of supply chain networks," Omega, Elsevier, vol. 47(C), pages 73-89.
    16. Rostami, Borzou & Chassein, André & Hopf, Michael & Frey, Davide & Buchheim, Christoph & Malucelli, Federico & Goerigk, Marc, 2018. "The quadratic shortest path problem: complexity, approximability, and solution methods," European Journal of Operational Research, Elsevier, vol. 268(2), pages 473-485.
    17. Unai Aldasoro & María Merino & Gloria Pérez, 2019. "Time consistent expected mean-variance in multistage stochastic quadratic optimization: a model and a matheuristic," Annals of Operations Research, Springer, vol. 280(1), pages 151-187, September.
    18. Christodoulos Floudas & Xiaoxia Lin, 2005. "Mixed Integer Linear Programming in Process Scheduling: Modeling, Algorithms, and Applications," Annals of Operations Research, Springer, vol. 139(1), pages 131-162, October.
    19. Gupta, Renu & Bandopadhyaya, Lakshmisree & Puri, M. C., 1996. "Ranking in quadratic integer programming problems," European Journal of Operational Research, Elsevier, vol. 95(1), pages 231-236, November.
    20. Angel L. Cedeño & Reinier López Ahuar & José Rojas & Gonzalo Carvajal & César Silva & Juan C. Agüero, 2022. "Model Predictive Control for Photovoltaic Plants with Non-Ideal Energy Storage Using Mixed Integer Linear Programming," Energies, MDPI, vol. 15(17), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:60:y:2012:i:6:p:1477-1490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.