IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v5y2018i3d10.1007_s40745-018-0147-2.html
   My bibliography  Save this article

$$\ell _1$$ ℓ 1 -Norm Based Central Point Analysis for Asymmetric Radial Data

Author

Listed:
  • Qi An

    (North Carolina State University)

  • Shu-Cherng Fang

    (North Carolina State University)

  • Tiantian Nie

    (University of North Carolina at Charlotte)

  • Shan Jiang

    (North Carolina State University)

Abstract

Multivariate asymmetric radial data clouds with irregularly positioned “spokes” and “clutters” are commonly seen in real life applications. In identifying the spoke directions of such data, a key initial step is to locate a central point from which each spoke extends and diverges. In this technical note, we propose a novel method that features a preselection procedure to screen out candidate points that have sufficiently many data points in the vicinity and identifies the central point by solving an $$\ell _1$$ ℓ 1 -norm constrained discrete optimization program. Extensive numerical experiments show that the proposed method is capable of providing central points with superior accuracy and robustness compared with other known methods and is computationally efficient for implementation.

Suggested Citation

  • Qi An & Shu-Cherng Fang & Tiantian Nie & Shan Jiang, 2018. "$$\ell _1$$ ℓ 1 -Norm Based Central Point Analysis for Asymmetric Radial Data," Annals of Data Science, Springer, vol. 5(3), pages 469-486, September.
  • Handle: RePEc:spr:aodasc:v:5:y:2018:i:3:d:10.1007_s40745-018-0147-2
    DOI: 10.1007/s40745-018-0147-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-018-0147-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-018-0147-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han-Lin Li & Hao-Chun Lu, 2009. "Global Optimization for Generalized Geometric Programs with Mixed Free-Sign Variables," Operations Research, INFORMS, vol. 57(3), pages 701-713, June.
    2. Tiantian Nie & Ziteng Wang & Shu-Cherng Fang & John E. Lavery, 2017. "Convex Shape Preservation of Cubic $$L^1$$ L 1 Spline Fits," Annals of Data Science, Springer, vol. 4(1), pages 123-147, March.
    3. Juan Pablo Vielma & Shabbir Ahmed & George Nemhauser, 2010. "Mixed-Integer Models for Nonseparable Piecewise-Linear Optimization: Unifying Framework and Extensions," Operations Research, INFORMS, vol. 58(2), pages 303-315, April.
    4. Warren P. Adams & Stephen M. Henry, 2012. "Base-2 Expansions for Linearizing Products of Functions of Discrete Variables," Operations Research, INFORMS, vol. 60(6), pages 1477-1490, December.
    5. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    6. Choulakian, V., 2006. "L1-norm projection pursuit principal component analysis," Computational Statistics & Data Analysis, Elsevier, vol. 50(6), pages 1441-1451, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han-Lin Li & Yao-Huei Huang & Shu-Cherng Fang, 2017. "Linear Reformulation of Polynomial Discrete Programming for Fast Computation," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 108-122, February.
    2. Liu, Haoxiang & Wang, David Z.W., 2015. "Global optimization method for network design problem with stochastic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 20-39.
    3. Choulakian, V. & Allard, J. & Almhana, J., 2006. "Robust centroid method," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 737-746, November.
    4. Brooks, J.P. & Dulá, J.H. & Boone, E.L., 2013. "A pure L1-norm principal component analysis," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 83-98.
    5. Li, Han-Lin & Fang, Shu-Cherng & Huang, Yao-Huei & Nie, Tiantian, 2016. "An enhanced logarithmic method for signomial programming with discrete variables," European Journal of Operational Research, Elsevier, vol. 255(3), pages 922-934.
    6. Scott J. Davis & Shatiel B. Edwards & Gerald E. Teper & David G. Bassett & Michael J. McCarthy & Scott C. Johnson & Craig R. Lawton & Matthew J. Hoffman & Liliana Shelton & Stephen M. Henry & Darryl J, 2016. "Maximizing the U.S. Army’s Future Contribution to Global Security Using the Capability Portfolio Analysis Tool (CPAT)," Interfaces, INFORMS, vol. 46(1), pages 91-108, February.
    7. Joey Huchette & Joey Huchette, 2019. "A Combinatorial Approach for Small and Strong Formulations of Disjunctive Constraints," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 793-820, August.
    8. Han-Lin Li & Yao-Huei Huang & Shu-Cherng Fang, 2013. "A Logarithmic Method for Reducing Binary Variables and Inequality Constraints in Solving Task Assignment Problems," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 643-653, November.
    9. Hao-Chun Lu, 2017. "Improved logarithmic linearizing method for optimization problems with free-sign pure discrete signomial terms," Journal of Global Optimization, Springer, vol. 68(1), pages 95-123, May.
    10. Plat, Richard, 2009. "Stochastic portfolio specific mortality and the quantification of mortality basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 123-132, August.
    11. Kondylis, Athanassios & Whittaker, Joe, 2008. "Spectral preconditioning of Krylov spaces: Combining PLS and PC regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2588-2603, January.
    12. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.
    13. Codas, Andrés & Camponogara, Eduardo, 2012. "Mixed-integer linear optimization for optimal lift-gas allocation with well-separator routing," European Journal of Operational Research, Elsevier, vol. 217(1), pages 222-231.
    14. Christensen, Tue R.L. & Labbé, Martine, 2015. "A branch-cut-and-price algorithm for the piecewise linear transportation problem," European Journal of Operational Research, Elsevier, vol. 245(3), pages 645-655.
    15. Paschalis Arvanitidis & Athina Economou & Christos Kollias, 2016. "Terrorism’s effects on social capital in European countries," Public Choice, Springer, vol. 169(3), pages 231-250, December.
    16. Rizvi, Syed Kumail Abbas & Rahat, Birjees & Naqvi, Bushra & Umar, Muhammad, 2024. "Revolutionizing finance: The synergy of fintech, digital adoption, and innovation," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    17. Teerachai Amnuaylojaroen & Pavinee Chanvichit, 2024. "Historical Analysis of the Effects of Drought on Rice and Maize Yields in Southeast Asia," Resources, MDPI, vol. 13(3), pages 1-18, March.
    18. Jon Lee & Daphne Skipper & Emily Speakman & Luze Xu, 2023. "Gaining or Losing Perspective for Piecewise-Linear Under-Estimators of Convex Univariate Functions," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 1-35, January.
    19. Weili Duan & Bin He & Daniel Nover & Guishan Yang & Wen Chen & Huifang Meng & Shan Zou & Chuanming Liu, 2016. "Water Quality Assessment and Pollution Source Identification of the Eastern Poyang Lake Basin Using Multivariate Statistical Methods," Sustainability, MDPI, vol. 8(2), pages 1-15, January.
    20. Adele Ravagnani & Fabrizio Lillo & Paola Deriu & Piero Mazzarisi & Francesca Medda & Antonio Russo, 2024. "Dimensionality reduction techniques to support insider trading detection," Papers 2403.00707, arXiv.org, revised May 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:5:y:2018:i:3:d:10.1007_s40745-018-0147-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.