IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v243y2015i3p985-994.html
   My bibliography  Save this article

Hybrid search for the optimal PMU placement problem on a power grid

Author

Listed:
  • Liao, Chung-Shou
  • Hsieh, Tsung-Jung
  • Guo, Xian-Chang
  • Liu, Jian-Hong
  • Chu, Chia-Chi

Abstract

With increasing global concerns regarding energy management, the concept of the smart grid has become a particularly important interdisciplinary research topic. In order to continually monitor a power utility system and efficiently observe all of the states of electric nodes and branches on a smart grid, placing PMUs (phasor measurement units) at selected nodes on the grid can monitor the operation conditions of the entire power grid. This study investigates methods for minimizing the high installation costs of PMUs, in order to monitor the entire system using a set of PMUs according to the power observation rules. Notably, this problem of monitoring a power grid can be transformed into the OPP (optimal PMU placement) problem. The objective is to simultaneously minimize the number of PMUs and ensure the complete observability of the whole power grid. This combinatorial optimization problem has been shown to be NP-complete. In this paper, we propose a hybrid two-phase algorithm for this problem. The first phase of the algorithm quickly identifies a set of candidate locations of PMUs based on a graph-theoretic decomposition approach for the power domination problem in tree-type graphs. Then, we use a local search heuristic method to derive the minimum number of PMUs in the second phase. In addition to the practical model, this study also considers the ideal model, in which all load nodes are assumed to be zero injection. The numerical studies on various IEEE power test systems demonstrate the superior performance of the proposed algorithm in both the models in regard to computational time and solution quality. In particular, in the ideal model, the number of PMUs required for the test systems can be significantly reduced. We also provide theoretical lower bounds on the number of installed PMUs in the ideal model and show that the derived solution can achieve the bound of the test systems.

Suggested Citation

  • Liao, Chung-Shou & Hsieh, Tsung-Jung & Guo, Xian-Chang & Liu, Jian-Hong & Chu, Chia-Chi, 2015. "Hybrid search for the optimal PMU placement problem on a power grid," European Journal of Operational Research, Elsevier, vol. 243(3), pages 985-994.
  • Handle: RePEc:eee:ejores:v:243:y:2015:i:3:p:985-994
    DOI: 10.1016/j.ejor.2014.12.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714010650
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.12.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Konak, Abdullah, 2012. "Network design problem with relays: A genetic algorithm with a path-based crossover and a set covering formulation," European Journal of Operational Research, Elsevier, vol. 218(3), pages 829-837.
    2. Ashkan Aazami, 2010. "Domination in graphs with bounded propagation: algorithms, formulations and hardness results," Journal of Combinatorial Optimization, Springer, vol. 19(4), pages 429-456, May.
    3. Szeto, W.Y. & Wu, Yongzhong & Ho, Sin C., 2011. "An artificial bee colony algorithm for the capacitated vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 215(1), pages 126-135, November.
    4. Contreras, Ivan & Fernández, Elena & Marín, Alfredo, 2010. "The Tree of Hubs Location Problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 390-400, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rohit Babu & Vikash Kumar Gupta & Kanna Subbaramaiah, 2022. "An Approach to Unravel the Optimal PMU Placement Problem for Full Observability of Power Network in View of Contingencies," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1170-1186, June.
    2. Ding, Weiyong & Xu, Maochao & Huang, Yu & Zhao, Peng & Song, Fengyi, 2021. "Cyber attacks on PMU placement in a smart grid: Characterization and optimization," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    3. Luis Hernández-Callejo, 2019. "A Comprehensive Review of Operation and Control, Maintenance and Lifespan Management, Grid Planning and Design, and Metering in Smart Grids," Energies, MDPI, vol. 12(9), pages 1-50, April.
    4. Rocchetta, Roberto & Zio, Enrico & Patelli, Edoardo, 2018. "A power-flow emulator approach for resilience assessment of repairable power grids subject to weather-induced failures and data deficiency," Applied Energy, Elsevier, vol. 210(C), pages 339-350.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Long, Jiancheng & Szeto, W.Y. & Huang, Hai-Jun, 2014. "A bi-objective turning restriction design problem in urban road networks," European Journal of Operational Research, Elsevier, vol. 237(2), pages 426-439.
    2. Alumur, Sibel A. & Yaman, Hande & Kara, Bahar Y., 2012. "Hierarchical multimodal hub location problem with time-definite deliveries," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1107-1120.
    3. Ivan Contreras & Moayad Tanash & Navneet Vidyarthi, 2017. "Exact and heuristic approaches for the cycle hub location problem," Annals of Operations Research, Springer, vol. 258(2), pages 655-677, November.
    4. Peter C. Schuur & Christopher N. Kellersmann, 2022. "Improving Transport Logistics by Aligning Long Combination Vehicles via Mobile Hub & Spoke Systems," Logistics, MDPI, vol. 6(1), pages 1-18, February.
    5. Qi Liu & Gengzhong Feng & Giri Kumar Tayi & Jun Tian, 2021. "Managing Data Quality of the Data Warehouse: A Chance-Constrained Programming Approach," Information Systems Frontiers, Springer, vol. 23(2), pages 375-389, April.
    6. Yiyong Xiao & Abdullah Konak, 2017. "A variable neighborhood search for the network design problem with relays," Journal of Heuristics, Springer, vol. 23(2), pages 137-164, June.
    7. Boris Brimkov & Derek Mikesell & Logan Smith, 2019. "Connected power domination in graphs," Journal of Combinatorial Optimization, Springer, vol. 38(1), pages 292-315, July.
    8. Alumur, Sibel A. & Nickel, Stefan & Saldanha-da-Gama, Francisco, 2012. "Hub location under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(4), pages 529-543.
    9. Alumur, Sibel A. & Campbell, James F. & Contreras, Ivan & Kara, Bahar Y. & Marianov, Vladimir & O’Kelly, Morton E., 2021. "Perspectives on modeling hub location problems," European Journal of Operational Research, Elsevier, vol. 291(1), pages 1-17.
    10. Guo, Jiaqi & Long, Jiancheng & Xu, Xiaoming & Yu, Miao & Yuan, Kai, 2022. "The vehicle routing problem of intercity ride-sharing between two cities," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 113-139.
    11. Min-Xia Zhang & Hong-Fan Yan & Jia-Yu Wu & Yu-Jun Zheng, 2020. "Quarantine Vehicle Scheduling for Transferring High-Risk Individuals in Epidemic Areas," IJERPH, MDPI, vol. 17(7), pages 1-17, March.
    12. Baozhen Yao & Qianqian Yan & Mengjie Zhang & Yunong Yang, 2017. "Improved artificial bee colony algorithm for vehicle routing problem with time windows," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-18, September.
    13. Xiang, Yi & Zhou, Yuren & Liu, Hailin, 2015. "An elitism based multi-objective artificial bee colony algorithm," European Journal of Operational Research, Elsevier, vol. 245(1), pages 168-193.
    14. Gao, Wei-feng & Huang, Ling-ling & Liu, San-yang & Chan, Felix T.S. & Dai, Cai & Shan, Xian, 2015. "Artificial bee colony algorithm with multiple search strategies," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 269-287.
    15. Fu, Hao & Lam, William H.K. & Shao, Hu & Ma, Wei & Chen, Bi Yu & Ho, H.W., 2022. "Optimization of multi-type sensor locations for simultaneous estimation of origin-destination demands and link travel times with covariance effects," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 19-47.
    16. Chen, Jingxu & Liu, Zhiyuan & Zhu, Senlai & Wang, Wei, 2015. "Design of limited-stop bus service with capacity constraint and stochastic travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 1-15.
    17. Boris Brimkov & Derek Mikesell & Illya V. Hicks, 2021. "Improved Computational Approaches and Heuristics for Zero Forcing," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1384-1399, October.
    18. Tingxi Wen & Zhongnan Zhang & Kelvin K L Wong, 2016. "Multi-Objective Algorithm for Blood Supply via Unmanned Aerial Vehicles to the Wounded in an Emergency Situation," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-22, May.
    19. Contreras, Ivan & Cordeau, Jean-François & Laporte, Gilbert, 2011. "Stochastic uncapacitated hub location," European Journal of Operational Research, Elsevier, vol. 212(3), pages 518-528, August.
    20. Chao Wang & Lei Chen & Changhong Lu, 2016. "$$k$$ k -Power domination in block graphs," Journal of Combinatorial Optimization, Springer, vol. 31(2), pages 865-873, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:243:y:2015:i:3:p:985-994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.