IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v258y2017i2d10.1007_s10479-015-2091-2.html
   My bibliography  Save this article

Exact and heuristic approaches for the cycle hub location problem

Author

Listed:
  • Ivan Contreras

    (Concordia University and Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT))

  • Moayad Tanash

    (Concordia University and Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT))

  • Navneet Vidyarthi

    (Concordia University and Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT))

Abstract

In this paper, we present solution algorithms for the cycle hub location problem (CHLP), which seeks to locate p hub facilities that are connected by means of a cycle, and to assign non-hub nodes to hubs so as to minimize the total cost of routing flows through the network. This problem is useful in modeling applications in transportation and telecommunications systems, where large setup costs on the links and reliability requirements make cycle topologies a prominent network architecture. We present a branch-and-cut algorithm that uses a flow-based formulation and two families of mixed-dicut inequalities as a lower bounding procedure at nodes of the enumeration tree. We also introduce a metaheuristic based on greedy randomized adaptive search procedure to obtain initial upper bounds for the exact algorithm and to obtain feasible solutions for large-scale instances of the CHLP. Numerical results on a set of benchmark instances with up to 100 nodes and 8 hubs confirm the efficiency of the proposed solution algorithms.

Suggested Citation

  • Ivan Contreras & Moayad Tanash & Navneet Vidyarthi, 2017. "Exact and heuristic approaches for the cycle hub location problem," Annals of Operations Research, Springer, vol. 258(2), pages 655-677, November.
  • Handle: RePEc:spr:annopr:v:258:y:2017:i:2:d:10.1007_s10479-015-2091-2
    DOI: 10.1007/s10479-015-2091-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-015-2091-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-015-2091-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. F. Campbell & A. T. Ernst & M. Krishnamoorthy, 2005. "Hub Arc Location Problems: Part I---Introduction and Results," Management Science, INFORMS, vol. 51(10), pages 1540-1555, October.
    2. Contreras, Ivan & Fernández, Elena, 2012. "General network design: A unified view of combined location and network design problems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 680-697.
    3. Labbe, Martine & Laporte, Gilbert & Rodriguez Martin, Inmaculada & Gonzalez, Juan Jose Salazar, 2005. "Locating median cycles in networks," European Journal of Operational Research, Elsevier, vol. 160(2), pages 457-470, January.
    4. A. T. Ernst & M. Krishnamoorthy, 1998. "An Exact Solution Approach Based on Shortest-Paths for p -Hub Median Problems," INFORMS Journal on Computing, INFORMS, vol. 10(2), pages 149-162, May.
    5. Current, John R. & Schilling, David A., 1994. "The median tour and maximal covering tour problems: Formulations and heuristics," European Journal of Operational Research, Elsevier, vol. 73(1), pages 114-126, February.
    6. J. F. Campbell & A. T. Ernst & M. Krishnamoorthy, 2005. "Hub Arc Location Problems: Part II---Formulations and Optimal Algorithms," Management Science, INFORMS, vol. 51(10), pages 1556-1571, October.
    7. Michel Gendreau & Gilbert Laporte & Frédéric Semet, 1997. "The Covering Tour Problem," Operations Research, INFORMS, vol. 45(4), pages 568-576, August.
    8. Selim Çetiner & Canan Sepil & Haldun Süral, 2010. "Hubbing and routing in postal delivery systems," Annals of Operations Research, Springer, vol. 181(1), pages 109-124, December.
    9. Cem Iyigun, 2013. "The planar hub location problem: a probabilistic clustering approach," Annals of Operations Research, Springer, vol. 211(1), pages 193-207, December.
    10. Yaman, Hande, 2009. "The hierarchical hub median problem with single assignment," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 643-658, July.
    11. Elisangela Martins de Sá & Ivan Contreras & Jean-François Cordeau & Ricardo Saraiva de Camargo & Gilberto de Miranda, 2015. "The Hub Line Location Problem," Transportation Science, INFORMS, vol. 49(3), pages 500-518, August.
    12. ORTEGA , Francisco & WOLSEY, Laurence A., 2003. "A branch-and-cut algorithm for the single-commodity, uncapacitated, fixed-charge network flow problem," LIDAM Reprints CORE 1611, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    13. R. Baldacci & M. Dell'Amico & J. Salazar González, 2007. "The Capacitated m -Ring-Star Problem," Operations Research, INFORMS, vol. 55(6), pages 1147-1162, December.
    14. de Sá, Elisangela Martins & de Camargo, Ricardo Saraiva & de Miranda, Gilberto, 2013. "An improved Benders decomposition algorithm for the tree of hubs location problem," European Journal of Operational Research, Elsevier, vol. 226(2), pages 185-202.
    15. Ivan Contreras & Elena Fernández, 2014. "Hub Location as the Minimization of a Supermodular Set Function," Operations Research, INFORMS, vol. 62(3), pages 557-570, June.
    16. Martins de Sá, Elisangela & Contreras, Ivan & Cordeau, Jean-François, 2015. "Exact and heuristic algorithms for the design of hub networks with multiple lines," European Journal of Operational Research, Elsevier, vol. 246(1), pages 186-198.
    17. Ivan Contreras & Jean-François Cordeau & Gilbert Laporte, 2011. "Benders Decomposition for Large-Scale Uncapacitated Hub Location," Operations Research, INFORMS, vol. 59(6), pages 1477-1490, December.
    18. Contreras, Ivan & Fernández, Elena & Marín, Alfredo, 2010. "The Tree of Hubs Location Problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 390-400, April.
    19. Alumur, Sibel A. & Kara, Bahar Y. & Karasan, Oya E., 2009. "The design of single allocation incomplete hub networks," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 936-951, December.
    20. Alumur, Sibel & Kara, Bahar Y., 2008. "Network hub location problems: The state of the art," European Journal of Operational Research, Elsevier, vol. 190(1), pages 1-21, October.
    21. Ernst, Andreas T. & Krishnamoorthy, Mohan, 1998. "Exact and heuristic algorithms for the uncapacitated multiple allocation p-hub median problem," European Journal of Operational Research, Elsevier, vol. 104(1), pages 100-112, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. G. Bergantiños & J. Vidal-Puga, 2020. "One-way and two-way cost allocation in hub network problems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(1), pages 199-234, March.
    2. Real, Luiza Bernardes & Contreras, Ivan & Cordeau, Jean-François & de Camargo, Ricardo Saraiva & de Miranda, Gilberto, 2021. "Multimodal hub network design with flexible routes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    3. Alumur, Sibel A. & Campbell, James F. & Contreras, Ivan & Kara, Bahar Y. & Marianov, Vladimir & O’Kelly, Morton E., 2021. "Perspectives on modeling hub location problems," European Journal of Operational Research, Elsevier, vol. 291(1), pages 1-17.
    4. Fernández, Elena & Sgalambro, Antonino, 2020. "On carriers collaboration in hub location problems," European Journal of Operational Research, Elsevier, vol. 283(2), pages 476-490.
    5. AL Athamneh, Raed & Tanash, Moayad & Bani Hani, Dania & Rawshdeh, Mustafa & Alawin, Abdallah & Albataineh, Zaid, 2023. "Variable Neighborhood Search Algorithm for the Single Assignment Incomplete Hub Location Problem with Modular Capacities and Direct Connections," Operations Research Perspectives, Elsevier, vol. 11(C).
    6. M. T. Alonso & R. Alvarez-Valdes & F. Parreño, 2020. "A GRASP algorithm for multi container loading problems with practical constraints," 4OR, Springer, vol. 18(1), pages 49-72, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alumur, Sibel A. & Campbell, James F. & Contreras, Ivan & Kara, Bahar Y. & Marianov, Vladimir & O’Kelly, Morton E., 2021. "Perspectives on modeling hub location problems," European Journal of Operational Research, Elsevier, vol. 291(1), pages 1-17.
    2. Bütün, Cihan & Petrovic, Sanja & Muyldermans, Luc, 2021. "The capacitated directed cycle hub location and routing problem under congestion," European Journal of Operational Research, Elsevier, vol. 292(2), pages 714-734.
    3. Contreras, Ivan & Fernández, Elena, 2012. "General network design: A unified view of combined location and network design problems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 680-697.
    4. Taherkhani, Gita & Alumur, Sibel A., 2019. "Profit maximizing hub location problems," Omega, Elsevier, vol. 86(C), pages 1-15.
    5. Alibeyg, Armaghan & Contreras, Ivan & Fernández, Elena, 2016. "Hub network design problems with profits," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 40-59.
    6. Alumur, Sibel A. & Yaman, Hande & Kara, Bahar Y., 2012. "Hierarchical multimodal hub location problem with time-definite deliveries," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1107-1120.
    7. de Sá, Elisangela Martins & de Camargo, Ricardo Saraiva & de Miranda, Gilberto, 2013. "An improved Benders decomposition algorithm for the tree of hubs location problem," European Journal of Operational Research, Elsevier, vol. 226(2), pages 185-202.
    8. Yaman, Hande, 2011. "Allocation strategies in hub networks," European Journal of Operational Research, Elsevier, vol. 211(3), pages 442-451, June.
    9. Elisangela Martins de Sá & Ivan Contreras & Jean-François Cordeau & Ricardo Saraiva de Camargo & Gilberto de Miranda, 2015. "The Hub Line Location Problem," Transportation Science, INFORMS, vol. 49(3), pages 500-518, August.
    10. Camilo Ortiz-Astorquiza & Ivan Contreras & Gilbert Laporte, 2019. "An Exact Algorithm for Multilevel Uncapacitated Facility Location," Transportation Science, INFORMS, vol. 53(4), pages 1085-1106, July.
    11. Alumur, Sibel A. & Nickel, Stefan & Saldanha-da-Gama, Francisco, 2012. "Hub location under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(4), pages 529-543.
    12. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    13. Alibeyg, Armaghan & Contreras, Ivan & Fernández, Elena, 2018. "Exact solution of hub network design problems with profits," European Journal of Operational Research, Elsevier, vol. 266(1), pages 57-71.
    14. Lüer-Villagra, Armin & Marianov, Vladimir, 2013. "A competitive hub location and pricing problem," European Journal of Operational Research, Elsevier, vol. 231(3), pages 734-744.
    15. Meng, Qiang & Wang, Xinchang, 2011. "Intermodal hub-and-spoke network design: Incorporating multiple stakeholders and multi-type containers," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 724-742, May.
    16. Ghaffarinasab, Nader & Kara, Bahar Y. & Campbell, James F., 2022. "The stratified p-hub center and p-hub maximal covering problems," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 120-148.
    17. Martins de Sá, Elisangela & Contreras, Ivan & Cordeau, Jean-François, 2015. "Exact and heuristic algorithms for the design of hub networks with multiple lines," European Journal of Operational Research, Elsevier, vol. 246(1), pages 186-198.
    18. Erdoğan, Güneş & Battarra, Maria & Rodríguez-Chía, Antonio M., 2022. "The hub location and pricing problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1035-1047.
    19. Correia, Isabel & Nickel, Stefan & Saldanha-da-Gama, Francisco, 2010. "Single-assignment hub location problems with multiple capacity levels," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1047-1066, September.
    20. Yuan, Yun & Yu, Jie, 2018. "Locating transit hubs in a multi-modal transportation network: A cluster-based optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 85-103.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:258:y:2017:i:2:d:10.1007_s10479-015-2091-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.