IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v38y2019i1d10.1007_s10878-019-00380-7.html
   My bibliography  Save this article

Connected power domination in graphs

Author

Listed:
  • Boris Brimkov

    (Rice University)

  • Derek Mikesell

    (Rice University)

  • Logan Smith

    (Rice University)

Abstract

The study of power domination in graphs arises from the problem of placing a minimum number of measurement devices in an electrical network while monitoring the entire network. A power dominating set of a graph is a set of vertices from which every vertex in the graph can be observed, following a set of rules for power system monitoring. In this paper, we study the problem of finding a minimum power dominating set which is connected; the cardinality of such a set is called the connected power domination number of the graph. We show that the connected power domination number of a graph is NP-hard to compute in general, but can be computed in linear time in cactus graphs and block graphs. We also give various structural results about connected power domination, including a cut vertex decomposition and a characterization of the effects of various vertex and edge operations on the connected power domination number. Finally, we present novel integer programming formulations for power domination, connected power domination, and power propagation time, and give computational results.

Suggested Citation

  • Boris Brimkov & Derek Mikesell & Logan Smith, 2019. "Connected power domination in graphs," Journal of Combinatorial Optimization, Springer, vol. 38(1), pages 292-315, July.
  • Handle: RePEc:spr:jcomop:v:38:y:2019:i:1:d:10.1007_s10878-019-00380-7
    DOI: 10.1007/s10878-019-00380-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-019-00380-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-019-00380-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yuchao & Yang, Zishen & Wang, Wei, 2017. "Complexity and algorithms for the connected vertex cover problem in 4-regular graphs," Applied Mathematics and Computation, Elsevier, vol. 301(C), pages 107-114.
    2. Daniela Ferrero & Leslie Hogben & Franklin H. J. Kenter & Michael Young, 2017. "Note on power propagation time and lower bounds for the power domination number," Journal of Combinatorial Optimization, Springer, vol. 34(3), pages 736-741, October.
    3. Ashkan Aazami, 2010. "Domination in graphs with bounded propagation: algorithms, formulations and hardness results," Journal of Combinatorial Optimization, Springer, vol. 19(4), pages 429-456, May.
    4. Chung-Shou Liao, 2016. "Power domination with bounded time constraints," Journal of Combinatorial Optimization, Springer, vol. 31(2), pages 725-742, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prosenjit Bose & Valentin Gledel & Claire Pennarun & Sander Verdonschot, 2020. "Power domination on triangular grids with triangular and hexagonal shape," Journal of Combinatorial Optimization, Springer, vol. 40(2), pages 482-500, August.
    2. Joanna Cyman & Joanna Raczek, 2022. "Application of Doubly Connected Dominating Sets to Safe Rectangular Smart Grids," Energies, MDPI, vol. 15(9), pages 1-12, April.
    3. Prosenjit Bose & Valentin Gledel & Claire Pennarun & Sander Verdonschot, 0. "Power domination on triangular grids with triangular and hexagonal shape," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-19.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prosenjit Bose & Valentin Gledel & Claire Pennarun & Sander Verdonschot, 2020. "Power domination on triangular grids with triangular and hexagonal shape," Journal of Combinatorial Optimization, Springer, vol. 40(2), pages 482-500, August.
    2. Chassidy Bozeman & Boris Brimkov & Craig Erickson & Daniela Ferrero & Mary Flagg & Leslie Hogben, 2019. "Restricted power domination and zero forcing problems," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 935-956, April.
    3. Daniela Ferrero & Leslie Hogben & Franklin H. J. Kenter & Michael Young, 2017. "Note on power propagation time and lower bounds for the power domination number," Journal of Combinatorial Optimization, Springer, vol. 34(3), pages 736-741, October.
    4. Prosenjit Bose & Valentin Gledel & Claire Pennarun & Sander Verdonschot, 0. "Power domination on triangular grids with triangular and hexagonal shape," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-19.
    5. Vasily V. Gusev, 2021. "Set-weighted games and their application to the cover problem," HSE Working papers WP BRP 247/EC/2021, National Research University Higher School of Economics.
    6. Gusev, Vasily V., 2023. "Set-weighted games and their application to the cover problem," European Journal of Operational Research, Elsevier, vol. 305(1), pages 438-450.
    7. Chung-Shou Liao, 2016. "Power domination with bounded time constraints," Journal of Combinatorial Optimization, Springer, vol. 31(2), pages 725-742, February.
    8. Eduardo Álvarez-Miranda & Markus Sinnl, 2020. "A branch-and-cut algorithm for the maximum covering cycle problem," Annals of Operations Research, Springer, vol. 284(2), pages 487-499, January.
    9. Boris Brimkov & Derek Mikesell & Illya V. Hicks, 2021. "Improved Computational Approaches and Heuristics for Zero Forcing," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1384-1399, October.
    10. Brimkov, Boris & Fast, Caleb C. & Hicks, Illya V., 2019. "Computational approaches for zero forcing and related problems," European Journal of Operational Research, Elsevier, vol. 273(3), pages 889-903.
    11. Chao Wang & Lei Chen & Changhong Lu, 2016. "$$k$$ k -Power domination in block graphs," Journal of Combinatorial Optimization, Springer, vol. 31(2), pages 865-873, February.
    12. Yuchao Li & Wei Wang & Zishen Yang, 2019. "The connected vertex cover problem in k-regular graphs," Journal of Combinatorial Optimization, Springer, vol. 38(2), pages 635-645, August.
    13. Liao, Chung-Shou & Hsieh, Tsung-Jung & Guo, Xian-Chang & Liu, Jian-Hong & Chu, Chia-Chi, 2015. "Hybrid search for the optimal PMU placement problem on a power grid," European Journal of Operational Research, Elsevier, vol. 243(3), pages 985-994.
    14. Brešar, Boštjan & Kos, Tim & Krivoš-Belluš, Rastislav & Semanišin, Gabriel, 2019. "Hitting subgraphs in P4-tidy graphs," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 211-219.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:38:y:2019:i:1:d:10.1007_s10878-019-00380-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.