IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i7p2275-d338067.html
   My bibliography  Save this article

Quarantine Vehicle Scheduling for Transferring High-Risk Individuals in Epidemic Areas

Author

Listed:
  • Min-Xia Zhang

    (College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China)

  • Hong-Fan Yan

    (College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China)

  • Jia-Yu Wu

    (College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China)

  • Yu-Jun Zheng

    (School of Information Science and Engineering, Hangzhou Normal University, Hangzhou 311121, China)

Abstract

In a large-scale epidemic outbreak, there can be many high-risk individuals to be transferred for medical isolation in epidemic areas. Typically, the individuals are scattered across different locations, and available quarantine vehicles are limited. Therefore, it is challenging to efficiently schedule the vehicles to transfer the individuals to isolated regions to control the spread of the epidemic. In this paper, we formulate such a quarantine vehicle scheduling problem for high-risk individual transfer, which is more difficult than most well-known vehicle routing problems. To efficiently solve this problem, we propose a hybrid algorithm based on the water wave optimization (WWO) metaheuristic and neighborhood search. The metaheuristic uses a small population to rapidly explore the solution space, and the neighborhood search uses a gradual strategy to improve the solution accuracy. Computational results demonstrate that the proposed algorithm significantly outperforms several existing algorithms and obtains high-quality solutions on real-world problem instances for high-risk individual transfer in Hangzhou, China, during the peak period of the novel coronavirus pneumonia (COVID-19).

Suggested Citation

  • Min-Xia Zhang & Hong-Fan Yan & Jia-Yu Wu & Yu-Jun Zheng, 2020. "Quarantine Vehicle Scheduling for Transferring High-Risk Individuals in Epidemic Areas," IJERPH, MDPI, vol. 17(7), pages 1-17, March.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:7:p:2275-:d:338067
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/7/2275/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/7/2275/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    2. Wohlgemuth, Sascha & Oloruntoba, Richard & Clausen, Uwe, 2012. "Dynamic vehicle routing with anticipation in disaster relief," Socio-Economic Planning Sciences, Elsevier, vol. 46(4), pages 261-271.
    3. Jean-Yves Potvin, 2009. "State-of-the Art Review ---Evolutionary Algorithms for Vehicle Routing," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 518-548, November.
    4. Shahparvari, Shahrooz & Abbasi, Babak, 2017. "Robust stochastic vehicle routing and scheduling for bushfire emergency evacuation: An Australian case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 104(C), pages 32-49.
    5. Hailin Wu & Fengming Tao & Qingqing Qiao & Mengjun Zhang, 2020. "A Chance-Constrained Vehicle Routing Problem for Wet Waste Collection and Transportation Considering Carbon Emissions," IJERPH, MDPI, vol. 17(2), pages 1-21, January.
    6. Qin Song & Yu-Jun Zheng & Jun Yang, 2019. "Effects of Food Contamination on Gastrointestinal Morbidity: Comparison of Different Machine-Learning Methods," IJERPH, MDPI, vol. 16(5), pages 1-12, March.
    7. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    8. Braysy, Olli & Hasle, Geir & Dullaert, Wout, 2004. "A multi-start local search algorithm for the vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 159(3), pages 586-605, December.
    9. Yu, Bin & Yang, Zhong-Zhen & Yao, Baozhen, 2009. "An improved ant colony optimization for vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 196(1), pages 171-176, July.
    10. Yangkun Xia & Zhuo Fu & Lijun Pan & Fenghua Duan, 2018. "Tabu search algorithm for the distance-constrained vehicle routing problem with split deliveries by order," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-19, May.
    11. The Jin Ai & Voratas Kachitvichyanukul, 2009. "A Particle Swarm Optimisation for Vehicle Routing Problem with Time Windows," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 6(4), pages 519-537.
    12. Wenzhu Liao & Lin Liu & Jiazhuo Fu, 2019. "A Comparative Study on the Routing Problem of Electric and Fuel Vehicles Considering Carbon Trading," IJERPH, MDPI, vol. 16(17), pages 1-25, August.
    13. Szeto, W.Y. & Wu, Yongzhong & Ho, Sin C., 2011. "An artificial bee colony algorithm for the capacitated vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 215(1), pages 126-135, November.
    14. Cattaruzza, Diego & Absi, Nabil & Feillet, Dominique & Vidal, Thibaut, 2014. "A memetic algorithm for the Multi Trip Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 833-848.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Reong & Hui-Ming Wee & Yu-Lin Hsiao, 2022. "20 Years of Particle Swarm Optimization Strategies for the Vehicle Routing Problem: A Bibliometric Analysis," Mathematics, MDPI, vol. 10(19), pages 1-19, October.
    2. Aderemi Oluyinka Adewumi & Olawale Joshua Adeleke, 2018. "A survey of recent advances in vehicle routing problems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(1), pages 155-172, February.
    3. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2018. "Vehicle routing problems with multiple trips," Annals of Operations Research, Springer, vol. 271(1), pages 127-159, December.
    4. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "Vehicle routing problems with multiple trips," 4OR, Springer, vol. 14(3), pages 223-259, September.
    5. Diana Puspita Sari & Nur Aini Masruroh & Anna Maria Sri Asih, 2021. "Extended Maximal Covering Location and Vehicle Routing Problems in Designing Smartphone Waste Collection Channels: A Case Study of Yogyakarta Province, Indonesia," Sustainability, MDPI, vol. 13(16), pages 1-23, August.
    6. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    7. Phan Nguyen Ky Phuc & Nguyen Le Phuong Thao, 2021. "Ant Colony Optimization for Multiple Pickup and Multiple Delivery Vehicle Routing Problem with Time Window and Heterogeneous Fleets," Logistics, MDPI, vol. 5(2), pages 1-13, May.
    8. Zhen, Lu & Ma, Chengle & Wang, Kai & Xiao, Liyang & Zhang, Wei, 2020. "Multi-depot multi-trip vehicle routing problem with time windows and release dates," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 135(C).
    9. Ines Sbai & Saoussen Krichen & Olfa Limam, 2022. "Two meta-heuristics for solving the capacitated vehicle routing problem: the case of the Tunisian Post Office," Operational Research, Springer, vol. 22(1), pages 507-549, March.
    10. M. Alinaghian & M. Ghazanfari & N. Norouzi & H. Nouralizadeh, 2017. "A Novel Model for the Time Dependent Competitive Vehicle Routing Problem: Modified Random Topology Particle Swarm Optimization," Networks and Spatial Economics, Springer, vol. 17(4), pages 1185-1211, December.
    11. Abdulkader, M.M.S. & Gajpal, Yuvraj & ElMekkawy, Tarek Y., 2018. "Vehicle routing problem in omni-channel retailing distribution systems," International Journal of Production Economics, Elsevier, vol. 196(C), pages 43-55.
    12. Alarcon Ortega, Emilio J. & Schilde, Michael & Doerner, Karl F., 2020. "Matheuristic search techniques for the consistent inventory routing problem with time windows and split deliveries," Operations Research Perspectives, Elsevier, vol. 7(C).
    13. Hailin Wu & Fengming Tao & Bo Yang, 2020. "Optimization of Vehicle Routing for Waste Collection and Transportation," IJERPH, MDPI, vol. 17(14), pages 1-26, July.
    14. Nicolas Rincon-Garcia & Ben J. Waterson & Tom J. Cherrett, 2018. "Requirements from vehicle routing software: perspectives from literature, developers and the freight industry," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 117-138, January.
    15. Babagolzadeh, Mahla & Zhang, Yahua & Abbasi, Babak & Shrestha, Anup & Zhang, Anming, 2022. "Promoting Australian regional airports with subsidy schemes: Optimised downstream logistics using vehicle routing problem," Transport Policy, Elsevier, vol. 128(C), pages 38-51.
    16. Pradhananga, Rojee & Taniguchi, Eiichi & Yamada, Tadashi & Qureshi, Ali Gul, 2014. "Bi-objective decision support system for routing and scheduling of hazardous materials," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 135-148.
    17. Qi, Mingyao & Lin, Wei-Hua & Li, Nan & Miao, Lixin, 2012. "A spatiotemporal partitioning approach for large-scale vehicle routing problems with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 248-257.
    18. Zhiping Zuo & Yanhui Li & Jing Fu & Jianlin Wu, 2019. "Human Resource Scheduling Model and Algorithm with Time Windows and Multi-Skill Constraints," Mathematics, MDPI, vol. 7(7), pages 1-18, July.
    19. Jinil Han & Chungmok Lee & Sungsoo Park, 2014. "A Robust Scenario Approach for the Vehicle Routing Problem with Uncertain Travel Times," Transportation Science, INFORMS, vol. 48(3), pages 373-390, August.
    20. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:7:p:2275-:d:338067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.