IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v291y2021i1p1-17.html
   My bibliography  Save this article

Perspectives on modeling hub location problems

Author

Listed:
  • Alumur, Sibel A.
  • Campbell, James F.
  • Contreras, Ivan
  • Kara, Bahar Y.
  • Marianov, Vladimir
  • O’Kelly, Morton E.

Abstract

The aim of this paper is to provide insights for better modeling hub location problems to help create a road map for future hub location research. We first present a taxonomy to provide a framework for the broad array of hub location models, and then seek to identify key gaps in the literature that provide opportunities for better models. We provide some new perspectives in several areas, including the historical evolution of hub location research, models for economies of scale, and relevant characteristics of different applications. We also provide a succinct summary of state-of-the-art formulation and solution approaches. We conclude with a set of themes that can be addressed in the future for better modeling hub location problems.

Suggested Citation

  • Alumur, Sibel A. & Campbell, James F. & Contreras, Ivan & Kara, Bahar Y. & Marianov, Vladimir & O’Kelly, Morton E., 2021. "Perspectives on modeling hub location problems," European Journal of Operational Research, Elsevier, vol. 291(1), pages 1-17.
  • Handle: RePEc:eee:ejores:v:291:y:2021:i:1:p:1-17
    DOI: 10.1016/j.ejor.2020.09.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720308432
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.09.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alumur, Sibel A. & Kara, Bahar Y. & Karasan, Oya E., 2009. "The design of single allocation incomplete hub networks," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 936-951, December.
    2. Morton O’Kelly & Henrique Luna & Ricardo Camargo & Gilberto Miranda, 2015. "Hub Location Problems with Price Sensitive Demands," Networks and Spatial Economics, Springer, vol. 15(4), pages 917-945, December.
    3. Marianov, Vladimir & Serra, Daniel & ReVelle, Charles, 1999. "Location of hubs in a competitive environment," European Journal of Operational Research, Elsevier, vol. 114(2), pages 363-371, April.
    4. Podnar, Hrvoje & Skorin-Kapov, Jadranka & Skorin-Kapov, Darko, 2002. "Network cost minimization using threshold-based discounting," European Journal of Operational Research, Elsevier, vol. 137(2), pages 371-386, March.
    5. Leonardo Basso & Sergio Jara-Díaz, 2006. "Distinguishing Multiproduct Economies of Scale from Economies of Density on a Fixed-Size Transport Network," Networks and Spatial Economics, Springer, vol. 6(2), pages 149-162, June.
    6. An, Yu & Zhang, Yu & Zeng, Bo, 2015. "The reliable hub-and-spoke design problem: Models and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 103-122.
    7. Lin, Cheng-Chang & Lee, Shwu-Chiou, 2010. "The competition game on hub network design," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 618-629, May.
    8. Alibeyg, Armaghan & Contreras, Ivan & Fernández, Elena, 2018. "Exact solution of hub network design problems with profits," European Journal of Operational Research, Elsevier, vol. 266(1), pages 57-71.
    9. Cunha, Claudio B. & Silva, Marcos Roberto, 2007. "A genetic algorithm for the problem of configuring a hub-and-spoke network for a LTL trucking company in Brazil," European Journal of Operational Research, Elsevier, vol. 179(3), pages 747-758, June.
    10. Ivan Contreras & Jean-François Cordeau & Gilbert Laporte, 2012. "Exact Solution of Large-Scale Hub Location Problems with Multiple Capacity Levels," Transportation Science, INFORMS, vol. 46(4), pages 439-459, November.
    11. Serper, Elif Zeynep & Alumur, Sibel A., 2016. "The design of capacitated intermodal hub networks with different vehicle types," Transportation Research Part B: Methodological, Elsevier, vol. 86(C), pages 51-65.
    12. Z. Drezner & G. O. Wesolowsky, 1982. "A Trajectory Approach to the Round-Trip Location Problem," Transportation Science, INFORMS, vol. 16(1), pages 56-66, February.
    13. Nader Azizi & Navneet Vidyarthi & Satyaveer S. Chauhan, 2018. "Modelling and analysis of hub-and-spoke networks under stochastic demand and congestion," Annals of Operations Research, Springer, vol. 264(1), pages 1-40, May.
    14. Canovas, Lazaro & Garcia, Sergio & Marin, Alfredo, 2007. "Solving the uncapacitated multiple allocation hub location problem by means of a dual-ascent technique," European Journal of Operational Research, Elsevier, vol. 179(3), pages 990-1007, June.
    15. Mahmutogullari, Ali Irfan & Kara, Bahar Y., 2016. "Hub location under competition," European Journal of Operational Research, Elsevier, vol. 250(1), pages 214-225.
    16. Mehmet R. Taner & Bahar Y. Kara, 2016. "Endogenous Effects of Hubbing on Flow Intensities," Networks and Spatial Economics, Springer, vol. 16(4), pages 1151-1181, December.
    17. Rothenbächer, Ann-Kathrin & Drexl, Michael & Irnich, Stefan, 2016. "Branch-and-price-and-cut for a service network design and hub location problem," European Journal of Operational Research, Elsevier, vol. 255(3), pages 935-947.
    18. García, Sergio & Landete, Mercedes & Marín, Alfredo, 2012. "New formulation and a branch-and-cut algorithm for the multiple allocation p-hub median problem," European Journal of Operational Research, Elsevier, vol. 220(1), pages 48-57.
    19. T. L. Magnanti & R. T. Wong, 1984. "Network Design and Transportation Planning: Models and Algorithms," Transportation Science, INFORMS, vol. 18(1), pages 1-55, February.
    20. Ivan Contreras & Juan A. Díaz & Elena Fernández, 2011. "Branch and Price for Large-Scale Capacitated Hub Location Problems with Single Assignment," INFORMS Journal on Computing, INFORMS, vol. 23(1), pages 41-55, February.
    21. Correia, Isabel & Nickel, Stefan & Saldanha-da-Gama, Francisco, 2010. "The capacitated single-allocation hub location problem revisited: A note on a classical formulation," European Journal of Operational Research, Elsevier, vol. 207(1), pages 92-96, November.
    22. Mohammadi, Mehrdad & Jula, Payman & Tavakkoli-Moghaddam, Reza, 2019. "Reliable single-allocation hub location problem with disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 90-120.
    23. Alumur, Sibel A. & Kara, Bahar Y. & Karasan, Oya E., 2012. "Multimodal hub location and hub network design," Omega, Elsevier, vol. 40(6), pages 927-939.
    24. Bahar Y. Kara & Barbaros Ç. Tansel, 2001. "The Latest Arrival Hub Location Problem," Management Science, INFORMS, vol. 47(10), pages 1408-1420, October.
    25. Hasan Pirkul & David A. Schilling, 1998. "An Efficient Procedure for Designing Single Allocation Hub and Spoke Systems," Management Science, INFORMS, vol. 44(12-Part-2), pages 235-242, December.
    26. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    27. Gelareh, Shahin & Neamatian Monemi, Rahimeh & Nickel, Stefan, 2015. "Multi-period hub location problems in transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 67-94.
    28. Yaman, Hande, 2011. "Allocation strategies in hub networks," European Journal of Operational Research, Elsevier, vol. 211(3), pages 442-451, June.
    29. J. F. Campbell & A. T. Ernst & M. Krishnamoorthy, 2005. "Hub Arc Location Problems: Part I---Introduction and Results," Management Science, INFORMS, vol. 51(10), pages 1540-1555, October.
    30. Leonardo J. Basso & Sergio R. Jara-Díaz, 2006. "Are Returns to Scale with Variable Network Size Adequate for Transport Industry Structure Analysis?," Transportation Science, INFORMS, vol. 40(3), pages 259-268, August.
    31. Johnston, Ahren & Ozment, John, 2013. "Economies of scale in the US airline industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 51(C), pages 95-108.
    32. O'Kelly, M. E. & Bryan, D. L., 1998. "Hub location with flow economies of scale," Transportation Research Part B: Methodological, Elsevier, vol. 32(8), pages 605-616, November.
    33. Masaeli, Mobina & Alumur, Sibel A. & Bookbinder, James H., 2018. "Shipment scheduling in hub location problems," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 126-142.
    34. Contreras, Ivan & Cordeau, Jean-François & Laporte, Gilbert, 2011. "Stochastic uncapacitated hub location," European Journal of Operational Research, Elsevier, vol. 212(3), pages 518-528, August.
    35. S Alumur & B Y Kara, 2009. "A hub covering network design problem for cargo applications in Turkey," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(10), pages 1349-1359, October.
    36. Honora Smith & Daniel Cakebread & Maria Battarra & Ben Shelbourne & Naseem Cassim & Lindi Coetzee, 2017. "Location of a hierarchy of HIV/AIDS test laboratories in an inbound hub network: case study in South Africa," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(9), pages 1068-1081, September.
    37. Wei Zhong & Zhicai Juan & Fang Zong & Huishuang Su, 2018. "Hierarchical hub location model and hybrid algorithm for integration of urban and rural public transport," International Journal of Distributed Sensor Networks, , vol. 14(4), pages 15501477187, April.
    38. de Sá, Elisangela Martins & de Camargo, Ricardo Saraiva & de Miranda, Gilberto, 2013. "An improved Benders decomposition algorithm for the tree of hubs location problem," European Journal of Operational Research, Elsevier, vol. 226(2), pages 185-202.
    39. Najy, Waleed & Diabat, Ali, 2020. "Benders decomposition for multiple-allocation hub-and-spoke network design with economies of scale and node congestion," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 62-84.
    40. Ivan Contreras & Elena Fernández, 2014. "Hub Location as the Minimization of a Supermodular Set Function," Operations Research, INFORMS, vol. 62(3), pages 557-570, June.
    41. Abdullah Dasci, 2011. "Conditional Location Problems on Networks and in the Plane," International Series in Operations Research & Management Science, in: H. A. Eiselt & Vladimir Marianov (ed.), Foundations of Location Analysis, chapter 0, pages 179-206, Springer.
    42. Ghaffarinasab, Nader & Motallebzadeh, Alireza, 2018. "Hub interdiction problem variants: Models and metaheuristic solution algorithms," European Journal of Operational Research, Elsevier, vol. 267(2), pages 496-512.
    43. Alumur, Sibel & Kara, Bahar Y., 2008. "Network hub location problems: The state of the art," European Journal of Operational Research, Elsevier, vol. 190(1), pages 1-21, October.
    44. Hande Yaman & Oya Ekin Karasan & Bahar Y. Kara, 2012. "Release Time Scheduling and Hub Location for Next-Day Delivery," Operations Research, INFORMS, vol. 60(4), pages 906-917, August.
    45. Zühal Kartal & Mohan Krishnamoorthy & Andreas T. Ernst, 2019. "Heuristic algorithms for the single allocation p-hub center problem with routing considerations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 99-145, March.
    46. Michael Drexl, 2012. "Synchronization in Vehicle Routing---A Survey of VRPs with Multiple Synchronization Constraints," Transportation Science, INFORMS, vol. 46(3), pages 297-316, August.
    47. Alf Kimms, 2006. "Economies of Scale in Hub & Spoke Network Design Models: We Have It All Wrong," Springer Books, in: Martin Morlock & Christoph Schwindt & Norbert Trautmann & Jürgen Zimmermann (ed.), Perspectives on Operations Research, pages 293-317, Springer.
    48. Rieck, Julia & Ehrenberg, Carsten & Zimmermann, Jürgen, 2014. "Many-to-many location-routing with inter-hub transport and multi-commodity pickup-and-delivery," European Journal of Operational Research, Elsevier, vol. 236(3), pages 863-878.
    49. Gelareh, Shahin & Nickel, Stefan, 2011. "Hub location problems in transportation networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1092-1111.
    50. Warren P. Adams & Hanif D. Sherali, 1990. "Linearization Strategies for a Class of Zero-One Mixed Integer Programming Problems," Operations Research, INFORMS, vol. 38(2), pages 217-226, April.
    51. Bernardes Real, Luiza & O'Kelly, Morton & de Miranda, Gilberto & Saraiva de Camargo, Ricardo, 2018. "The gateway hub location problem," Journal of Air Transport Management, Elsevier, vol. 73(C), pages 95-112.
    52. Martins de Sá, Elisangela & Contreras, Ivan & Cordeau, Jean-François, 2015. "Exact and heuristic algorithms for the design of hub networks with multiple lines," European Journal of Operational Research, Elsevier, vol. 246(1), pages 186-198.
    53. Soylu, Banu & Katip, Hatice, 2019. "A multiobjective hub-airport location problem for an airline network design," European Journal of Operational Research, Elsevier, vol. 277(2), pages 412-425.
    54. Alumur, Sibel A. & Yaman, Hande & Kara, Bahar Y., 2012. "Hierarchical multimodal hub location problem with time-definite deliveries," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1107-1120.
    55. Kuby, Michael J. & Gray, Robert Gordon, 1993. "The hub network design problem with stopovers and feeders: The case of Federal Express," Transportation Research Part A: Policy and Practice, Elsevier, vol. 27(1), pages 1-12, January.
    56. Sibel A. Alumur & Stefan Nickel & Francisco Saldanha-da-Gama & Yusuf Seçerdin, 2016. "Multi-period hub network design problems with modular capacities," Annals of Operations Research, Springer, vol. 246(1), pages 289-312, November.
    57. Fernández, Elena & Sgalambro, Antonino, 2020. "On carriers collaboration in hub location problems," European Journal of Operational Research, Elsevier, vol. 283(2), pages 476-490.
    58. Taherkhani, Gita & Alumur, Sibel A., 2019. "Profit maximizing hub location problems," Omega, Elsevier, vol. 86(C), pages 1-15.
    59. Campbell, James F., 1994. "Integer programming formulations of discrete hub location problems," European Journal of Operational Research, Elsevier, vol. 72(2), pages 387-405, January.
    60. Ernst, Andreas T. & Krishnamoorthy, Mohan, 1998. "Exact and heuristic algorithms for the uncapacitated multiple allocation p-hub median problem," European Journal of Operational Research, Elsevier, vol. 104(1), pages 100-112, January.
    61. Skorin-Kapov, Darko & Skorin-Kapov, Jadranka & O'Kelly, Morton, 1996. "Tight linear programming relaxations of uncapacitated p-hub median problems," European Journal of Operational Research, Elsevier, vol. 94(3), pages 582-593, November.
    62. Alibeyg, Armaghan & Contreras, Ivan & Fernández, Elena, 2016. "Hub network design problems with profits," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 40-59.
    63. Morton E. O'Kelly & Harvey J. Miller, 1991. "Solution Strategies For The Single Facility Minimax Hub Location Problem," Papers in Regional Science, Wiley Blackwell, vol. 70(4), pages 367-380, October.
    64. Bredström, David & Rönnqvist, Mikael, 2008. "Combined vehicle routing and scheduling with temporal precedence and synchronization constraints," European Journal of Operational Research, Elsevier, vol. 191(1), pages 19-31, November.
    65. J. F. Campbell & A. T. Ernst & M. Krishnamoorthy, 2005. "Hub Arc Location Problems: Part II---Formulations and Optimal Algorithms," Management Science, INFORMS, vol. 51(10), pages 1556-1571, October.
    66. Hau L. Lee & Sonali V. Rammohan & Lesley Sept, 2013. "Innovative Logistics in Extreme Conditions: The Case of Health Care Delivery in Gambia," International Series in Operations Research & Management Science, in: James H. Bookbinder (ed.), Handbook of Global Logistics, edition 127, chapter 0, pages 297-322, Springer.
    67. Ivan Contreras & Moayad Tanash & Navneet Vidyarthi, 2017. "Exact and heuristic approaches for the cycle hub location problem," Annals of Operations Research, Springer, vol. 258(2), pages 655-677, November.
    68. Lüer-Villagra, Armin & Marianov, Vladimir, 2013. "A competitive hub location and pricing problem," European Journal of Operational Research, Elsevier, vol. 231(3), pages 734-744.
    69. Yaman, Hande, 2009. "The hierarchical hub median problem with single assignment," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 643-658, July.
    70. Elisangela Martins de Sá & Ivan Contreras & Jean-François Cordeau & Ricardo Saraiva de Camargo & Gilberto de Miranda, 2015. "The Hub Line Location Problem," Transportation Science, INFORMS, vol. 49(3), pages 500-518, August.
    71. Hamid Mokhtar & Mohan Krishnamoorthy & Andreas T. Ernst, 2018. "A Modified Benders Method for the Single- and Multiple Allocation P-Hub Median Problems," Operations Research Proceedings, in: Natalia Kliewer & Jan Fabian Ehmke & Ralf Borndörfer (ed.), Operations Research Proceedings 2017, pages 135-141, Springer.
    72. Samir Elhedhli & Huyu Wu, 2010. "A Lagrangean Heuristic for Hub-and-Spoke System Design with Capacity Selection and Congestion," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 282-296, May.
    73. Ivan Contreras & Jean-François Cordeau & Gilbert Laporte, 2011. "Benders Decomposition for Large-Scale Uncapacitated Hub Location," Operations Research, INFORMS, vol. 59(6), pages 1477-1490, December.
    74. Peter G. Grove & Morton E. O'Kelly, 1986. "Hub Networks And Simulated Schedule Delay," Papers in Regional Science, Wiley Blackwell, vol. 59(1), pages 103-119, January.
    75. Gelareh, Shahin & Nickel, Stefan & Pisinger, David, 2010. "Liner shipping hub network design in a competitive environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 991-1004, November.
    76. Boland, Natashia & Krishnamoorthy, Mohan & Ernst, Andreas T. & Ebery, Jamie, 2004. "Preprocessing and cutting for multiple allocation hub location problems," European Journal of Operational Research, Elsevier, vol. 155(3), pages 638-653, June.
    77. Blanco, Víctor & Puerto, Justo & Ben-Ali, Safae El-Haj, 2016. "Continuous multifacility ordered median location problems," European Journal of Operational Research, Elsevier, vol. 250(1), pages 56-64.
    78. Racunica, Illia & Wynter, Laura, 2005. "Optimal location of intermodal freight hubs," Transportation Research Part B: Methodological, Elsevier, vol. 39(5), pages 453-477, June.
    79. A.T. Ernst & M. Krishnamoorthy, 1999. "Solution algorithms for the capacitated single allocation hub location problem," Annals of Operations Research, Springer, vol. 86(0), pages 141-159, January.
    80. Carlos F. Daganzo, 1987. "The Break-Bulk Role of Terminals in Many-to-Many Logistic Networks," Operations Research, INFORMS, vol. 35(4), pages 543-555, August.
    81. A. T. Ernst & M. Krishnamoorthy, 1998. "An Exact Solution Approach Based on Shortest-Paths for p -Hub Median Problems," INFORMS Journal on Computing, INFORMS, vol. 10(2), pages 149-162, May.
    82. Dukkanci, Okan & Peker, Meltem & Kara, Bahar Y., 2019. "Green hub location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 116-139.
    83. Snickars, Folke, 1978. "Convexity and duality properties of a quadratic intraregional location model," Regional Science and Urban Economics, Elsevier, vol. 8(1), pages 5-19, February.
    84. Corberán, Ángel & Landete, Mercedes & Peiró, Juanjo & Saldanha-da-Gama, Francisco, 2019. "Improved polyhedral descriptions and exact procedures for a broad class of uncapacitated p-hub median problems," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 38-63.
    85. Ghaffarinasab, Nader & Atayi, Reza, 2018. "An implicit enumeration algorithm for the hub interdiction median problem with fortification," European Journal of Operational Research, Elsevier, vol. 267(1), pages 23-39.
    86. Jara-Díaz, Sergio R. & Cortés, Cristián E. & Morales, Gabriela A., 2013. "Explaining changes and trends in the airline industry: Economies of density, multiproduct scale, and spatial scope," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 13-26.
    87. Ricardo Saraiva de Camargo & Gilberto de Miranda & Henrique Pacca L. Luna, 2009. "Benders Decomposition for Hub Location Problems with Economies of Scale," Transportation Science, INFORMS, vol. 43(1), pages 86-97, February.
    88. Contreras, Ivan & Fernández, Elena & Marín, Alfredo, 2010. "The Tree of Hubs Location Problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 390-400, April.
    89. Ivan Contreras & Jean-François Cordeau & Gilbert Laporte, 2011. "The Dynamic Uncapacitated Hub Location Problem," Transportation Science, INFORMS, vol. 45(1), pages 18-32, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taherkhani, Gita & Alumur, Sibel A., 2019. "Profit maximizing hub location problems," Omega, Elsevier, vol. 86(C), pages 1-15.
    2. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    3. Dhyani, Sneha & Jayaswal, Sachin & Sinha, Ankur & Vidyarthi, Navneet, 2019. "Alternate Second Order Conic Programming Reformulations for Hub Location with Capacity Selection under Demand," IIMA Working Papers WP 2018-12-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    4. Alibeyg, Armaghan & Contreras, Ivan & Fernández, Elena, 2018. "Exact solution of hub network design problems with profits," European Journal of Operational Research, Elsevier, vol. 266(1), pages 57-71.
    5. Neamatian Monemi, Rahimeh & Gelareh, Shahin & Nagih, Anass & Maculan, Nelson & Danach, Kassem, 2021. "Multi-period hub location problem with serial demands: A case study of humanitarian aids distribution in Lebanon," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    6. Domínguez-Bravo, Carmen-Ana & Fernández, Elena & Lüer-Villagra, Armin, 2024. "Hub location with congestion and time-sensitive demand," European Journal of Operational Research, Elsevier, vol. 316(3), pages 828-844.
    7. Lüer-Villagra, Armin & Marianov, Vladimir, 2013. "A competitive hub location and pricing problem," European Journal of Operational Research, Elsevier, vol. 231(3), pages 734-744.
    8. Ghaffarinasab, Nader & Kara, Bahar Y. & Campbell, James F., 2022. "The stratified p-hub center and p-hub maximal covering problems," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 120-148.
    9. Yaman, Hande, 2011. "Allocation strategies in hub networks," European Journal of Operational Research, Elsevier, vol. 211(3), pages 442-451, June.
    10. Erdoğan, Güneş & Battarra, Maria & Rodríguez-Chía, Antonio M., 2022. "The hub location and pricing problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1035-1047.
    11. Contreras, Ivan & Fernández, Elena, 2012. "General network design: A unified view of combined location and network design problems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 680-697.
    12. Bütün, Cihan & Petrovic, Sanja & Muyldermans, Luc, 2021. "The capacitated directed cycle hub location and routing problem under congestion," European Journal of Operational Research, Elsevier, vol. 292(2), pages 714-734.
    13. de Sá, Elisangela Martins & de Camargo, Ricardo Saraiva & de Miranda, Gilberto, 2013. "An improved Benders decomposition algorithm for the tree of hubs location problem," European Journal of Operational Research, Elsevier, vol. 226(2), pages 185-202.
    14. Ghaffarinasab, Nader & Kara, Bahar Y., 2022. "A conditional β-mean approach to risk-averse stochastic multiple allocation hub location problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    15. Alibeyg, Armaghan & Contreras, Ivan & Fernández, Elena, 2016. "Hub network design problems with profits," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 40-59.
    16. Alumur, Sibel A. & Nickel, Stefan & Saldanha-da-Gama, Francisco, 2012. "Hub location under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(4), pages 529-543.
    17. AL Athamneh, Raed & Tanash, Moayad & Bani Hani, Dania & Rawshdeh, Mustafa & Alawin, Abdallah & Albataineh, Zaid, 2023. "Variable Neighborhood Search Algorithm for the Single Assignment Incomplete Hub Location Problem with Modular Capacities and Direct Connections," Operations Research Perspectives, Elsevier, vol. 11(C).
    18. Zetina, Carlos Armando & Contreras, Ivan & Cordeau, Jean-François & Nikbakhsh, Ehsan, 2017. "Robust uncapacitated hub location," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 393-410.
    19. Ghaffarinasab, Nader & Çavuş, Özlem & Kara, Bahar Y., 2023. "A mean-CVaR approach to the risk-averse single allocation hub location problem with flow-dependent economies of scale," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 32-53.
    20. Alumur, Sibel & Kara, Bahar Y., 2008. "Network hub location problems: The state of the art," European Journal of Operational Research, Elsevier, vol. 190(1), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:291:y:2021:i:1:p:1-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.