IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v240y2015i1p54-71.html
   My bibliography  Save this article

Multiobjective GRASP with Path Relinking

Author

Listed:
  • Martí, Rafael
  • Campos, Vicente
  • Resende, Mauricio G.C.
  • Duarte, Abraham

Abstract

In this paper we review and propose different adaptations of the GRASP metaheuristic to solve multiobjective combinatorial optimization problems. In particular, we describe several alternatives to specialize the construction and improvement components of GRASP when two or more objectives are considered. GRASP has been successfully coupled with Path Relinking for single-objective optimization. Moreover, we propose different hybridizations of GRASP and Path Relinking for multiobjective optimization. We apply the proposed GRASP with Path Relinking variants to two combinatorial optimization problems, the biobjective orienteering problem and the biobjective path dissimilarity problem. We report on empirical tests with 70 instances and 30 algorithms, that show that the proposed heuristics are competitive with the state-of-the-art methods for these problems.

Suggested Citation

  • Martí, Rafael & Campos, Vicente & Resende, Mauricio G.C. & Duarte, Abraham, 2015. "Multiobjective GRASP with Path Relinking," European Journal of Operational Research, Elsevier, vol. 240(1), pages 54-71.
  • Handle: RePEc:eee:ejores:v:240:y:2015:i:1:p:54-71
    DOI: 10.1016/j.ejor.2014.06.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714005451
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.06.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas A. Feo & Mauricio G. C. Resende & Stuart H. Smith, 1994. "A Greedy Randomized Adaptive Search Procedure for Maximum Independent Set," Operations Research, INFORMS, vol. 42(5), pages 860-878, October.
    2. Paquete, Luis & Stutzle, Thomas, 2006. "A study of stochastic local search algorithms for the biobjective QAP with correlated flow matrices," European Journal of Operational Research, Elsevier, vol. 169(3), pages 943-959, March.
    3. Dell'Olmo, Paolo & Gentili, Monica & Scozzari, Andrea, 2005. "On finding dissimilar Pareto-optimal paths," European Journal of Operational Research, Elsevier, vol. 162(1), pages 70-82, April.
    4. Dominique Feillet & Pierre Dejax & Michel Gendreau, 2005. "Traveling Salesman Problems with Profits," Transportation Science, INFORMS, vol. 39(2), pages 188-205, May.
    5. José Arroyo & Pedro Vieira & Dalessandro Vianna, 2008. "A GRASP algorithm for the multi-criteria minimum spanning tree problem," Annals of Operations Research, Springer, vol. 159(1), pages 125-133, March.
    6. Delorme, Xavier & Gandibleux, Xavier & Degoutin, Fabien, 2010. "Evolutionary, constructive and hybrid procedures for the bi-objective set packing problem," European Journal of Operational Research, Elsevier, vol. 204(2), pages 206-217, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aymeric Blot & Marie-Éléonore Kessaci & Laetitia Jourdan, 2018. "Survey and unification of local search techniques in metaheuristics for multi-objective combinatorial optimisation," Journal of Heuristics, Springer, vol. 24(6), pages 853-877, December.
    2. Raka Jovanovic & Antonio P. Sanfilippo & Stefan Voß, 2022. "Fixed set search applied to the multi-objective minimum weighted vertex cover problem," Journal of Heuristics, Springer, vol. 28(4), pages 481-508, August.
    3. Ivorra, Benjamin & Mohammadi, Bijan & Manuel Ramos, Angel, 2015. "A multi-layer line search method to improve the initialization of optimization algorithms," European Journal of Operational Research, Elsevier, vol. 247(3), pages 711-720.
    4. Martha-Selene Casas-Ramírez & José-Fernando Camacho-Vallejo & Rosa G. González-Ramírez & José-Antonio Marmolejo-Saucedo & José-Manuel Velarde-Cantú, 2018. "Optimizing a Biobjective Production-Distribution Planning Problem Using a GRASP," Complexity, Hindawi, vol. 2018, pages 1-13, February.
    5. Pushak, Yasha & Hare, Warren & Lucet, Yves, 2016. "Multiple-path selection for new highway alignments using discrete algorithms," European Journal of Operational Research, Elsevier, vol. 248(2), pages 415-427.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaszkiewicz, Andrzej, 2018. "Many-Objective Pareto Local Search," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1001-1013.
    2. I. F. C. Fernandes & E. F. G. Goldbarg & S. M. D. M. Maia & M. C. Goldbarg, 2020. "Empirical study of exact algorithms for the multi-objective spanning tree," Computational Optimization and Applications, Springer, vol. 75(2), pages 561-605, March.
    3. Mohri, Seyed Sina & Mohammadi, Mehrdad & Gendreau, Michel & Pirayesh, Amir & Ghasemaghaei, Ali & Salehi, Vahid, 2022. "Hazardous material transportation problems: A comprehensive overview of models and solution approaches," European Journal of Operational Research, Elsevier, vol. 302(1), pages 1-38.
    4. Pradhananga, Rojee & Taniguchi, Eiichi & Yamada, Tadashi & Qureshi, Ali Gul, 2014. "Bi-objective decision support system for routing and scheduling of hazardous materials," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 135-148.
    5. Herrán, Alberto & Manuel Colmenar, J. & Duarte, Abraham, 2021. "An efficient variable neighborhood search for the Space-Free Multi-Row Facility Layout problem," European Journal of Operational Research, Elsevier, vol. 295(3), pages 893-907.
    6. Kobeaga, Gorka & Rojas-Delgado, Jairo & Merino, María & Lozano, Jose A., 2024. "A revisited branch-and-cut algorithm for large-scale orienteering problems," European Journal of Operational Research, Elsevier, vol. 313(1), pages 44-68.
    7. Li, Yuan & Chen, Haoxun & Prins, Christian, 2016. "Adaptive large neighborhood search for the pickup and delivery problem with time windows, profits, and reserved requests," European Journal of Operational Research, Elsevier, vol. 252(1), pages 27-38.
    8. Hela Masri & Saoussen Krichen, 2018. "Exact and approximate approaches for the Pareto front generation of the single path multicommodity flow problem," Annals of Operations Research, Springer, vol. 267(1), pages 353-377, August.
    9. Racha El-Hajj & Rym Nesrine Guibadj & Aziz Moukrim & Mehdi Serairi, 2020. "A PSO based algorithm with an efficient optimal split procedure for the multiperiod vehicle routing problem with profit," Annals of Operations Research, Springer, vol. 291(1), pages 281-316, August.
    10. Azi, Nabila & Gendreau, Michel & Potvin, Jean-Yves, 2010. "An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles," European Journal of Operational Research, Elsevier, vol. 202(3), pages 756-763, May.
    11. Yogesh K. Agarwal, 2002. "Design of Capacitated Multicommodity Networks with Multiple Facilities," Operations Research, INFORMS, vol. 50(2), pages 333-344, April.
    12. Mario Pavone & Giuseppe Narzisi & Giuseppe Nicosia, 2012. "Clonal selection: an immunological algorithm for global optimization over continuous spaces," Journal of Global Optimization, Springer, vol. 53(4), pages 769-808, August.
    13. Parreño, Francisco & Pacino, Dario & Alvarez-Valdes, Ramon, 2016. "A GRASP algorithm for the container stowage slot planning problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 141-157.
    14. Andrzej Jaszkiewicz & Thibaut Lust, 2017. "Proper balance between search towards and along Pareto front: biobjective TSP case study," Annals of Operations Research, Springer, vol. 254(1), pages 111-130, July.
    15. Alejandra Casado & Sergio Pérez-Peló & Jesús Sánchez-Oro & Abraham Duarte, 2022. "A GRASP algorithm with Tabu Search improvement for solving the maximum intersection of k-subsets problem," Journal of Heuristics, Springer, vol. 28(1), pages 121-146, February.
    16. Zajac, Sandra & Huber, Sandra, 2021. "Objectives and methods in multi-objective routing problems: a survey and classification scheme," European Journal of Operational Research, Elsevier, vol. 290(1), pages 1-25.
    17. Daniel Negrotto & Irene Loiseau, 2021. "A Branch & Cut algorithm for the prize-collecting capacitated location routing problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 34-57, April.
    18. Archetti, Claudia & Corberán, Ángel & Plana, Isaac & Sanchis, José Maria & Speranza, M. Grazia, 2015. "A matheuristic for the Team Orienteering Arc Routing Problem," European Journal of Operational Research, Elsevier, vol. 245(2), pages 392-401.
    19. Leticia Vargas & Nicolas Jozefowiez & Sandra Ulrich Ngueveu, 2017. "A dynamic programming operator for tour location problems applied to the covering tour problem," Journal of Heuristics, Springer, vol. 23(1), pages 53-80, February.
    20. Sun, Peng & Veelenturf, Lucas P. & Hewitt, Mike & Van Woensel, Tom, 2018. "The time-dependent pickup and delivery problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 1-24.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:240:y:2015:i:1:p:54-71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.