IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v159y2008i1p125-13310.1007-s10479-007-0263-4.html
   My bibliography  Save this article

A GRASP algorithm for the multi-criteria minimum spanning tree problem

Author

Listed:
  • José Arroyo
  • Pedro Vieira
  • Dalessandro Vianna

Abstract

This paper proposes a GRASP (Greedy Randomized Adaptive Search Procedure) algorithm for the multi-criteria minimum spanning tree problem, which is NP-hard. In this problem a vector of costs is defined for each edge of the graph and the problem is to find all Pareto optimal or efficient spanning trees (solutions). The algorithm is based on the optimization of different weighted utility functions. In each iteration, a weight vector is defined and a solution is built using a greedy randomized constructive procedure. The found solution is submitted to a local search trying to improve the value of the weighted utility function. We use a drop-and-add neighborhood where the spanning trees are represented by Prufer numbers. In order to find a variety of efficient solutions, we use different weight vectors, which are distributed uniformly on the Pareto frontier. The proposed algorithm is tested on problems with r=2 and 3 criteria. For non-complete graphs with n=10, 20 and 30 nodes, the performance of the algorithm is tested against a complete enumeration. For complete graphs with n=20, 30 and 50 nodes the performance of the algorithm is tested using two types of weighted utility functions. The algorithm is also compared with the multi-criteria version of the Kruskal’s algorithm, which generates supported efficient solutions. Copyright Springer Science+Business Media, LLC 2008

Suggested Citation

  • José Arroyo & Pedro Vieira & Dalessandro Vianna, 2008. "A GRASP algorithm for the multi-criteria minimum spanning tree problem," Annals of Operations Research, Springer, vol. 159(1), pages 125-133, March.
  • Handle: RePEc:spr:annopr:v:159:y:2008:i:1:p:125-133:10.1007/s10479-007-0263-4
    DOI: 10.1007/s10479-007-0263-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-007-0263-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-007-0263-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J E C Arroyo & V A Armentano, 2004. "A partial enumeration heuristic for multi-objective flowshop scheduling problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 1000-1007, September.
    2. Ramos, R. M. & Alonso, S. & Sicilia, J. & Gonzalez, C., 1998. "The problem of the optimal biobjective spanning tree," European Journal of Operational Research, Elsevier, vol. 111(3), pages 617-628, December.
    3. Ehrgott, Matthias & Klamroth, Kathrin, 1997. "Connectedness of efficient solutions in multiple criteria combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 97(1), pages 159-166, February.
    4. Zhou, Gengui & Gen, Mitsuo, 1999. "Genetic algorithm approach on multi-criteria minimum spanning tree problem," European Journal of Operational Research, Elsevier, vol. 114(1), pages 141-152, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carolina Almeida & Richard Gonçalves & Elizabeth Goldbarg & Marco Goldbarg & Myriam Delgado, 2012. "An experimental analysis of evolutionary heuristics for the biobjective traveling purchaser problem," Annals of Operations Research, Springer, vol. 199(1), pages 305-341, October.
    2. I. F. C. Fernandes & E. F. G. Goldbarg & S. M. D. M. Maia & M. C. Goldbarg, 2020. "Empirical study of exact algorithms for the multi-objective spanning tree," Computational Optimization and Applications, Springer, vol. 75(2), pages 561-605, March.
    3. Andréa Santos & Diego Lima & Dario Aloise, 2014. "Modeling and solving the bi-objective minimum diameter-cost spanning tree problem," Journal of Global Optimization, Springer, vol. 60(2), pages 195-216, October.
    4. Martí, Rafael & Campos, Vicente & Resende, Mauricio G.C. & Duarte, Abraham, 2015. "Multiobjective GRASP with Path Relinking," European Journal of Operational Research, Elsevier, vol. 240(1), pages 54-71.
    5. Iago A. Carvalho & Amadeu A. Coco, 2023. "On solving bi-objective constrained minimum spanning tree problems," Journal of Global Optimization, Springer, vol. 87(1), pages 301-323, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francis Sourd & Olivier Spanjaard, 2008. "A Multiobjective Branch-and-Bound Framework: Application to the Biobjective Spanning Tree Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 472-484, August.
    2. Pedro Correia & Luís Paquete & José Rui Figueira, 2021. "Finding multi-objective supported efficient spanning trees," Computational Optimization and Applications, Springer, vol. 78(2), pages 491-528, March.
    3. Perny, Patrice & Spanjaard, Olivier, 2005. "A preference-based approach to spanning trees and shortest paths problems***," European Journal of Operational Research, Elsevier, vol. 162(3), pages 584-601, May.
    4. Andréa Santos & Diego Lima & Dario Aloise, 2014. "Modeling and solving the bi-objective minimum diameter-cost spanning tree problem," Journal of Global Optimization, Springer, vol. 60(2), pages 195-216, October.
    5. Altannar Chinchuluun & Panos Pardalos, 2007. "A survey of recent developments in multiobjective optimization," Annals of Operations Research, Springer, vol. 154(1), pages 29-50, October.
    6. Alonso, Sergio & Domínguez-Ríos, Miguel Ángel & Colebrook, Marcos & Sedeo-Noda, Antonio, 2009. "Optimality conditions in preference-based spanning tree problems," European Journal of Operational Research, Elsevier, vol. 198(1), pages 232-240, October.
    7. I. F. C. Fernandes & E. F. G. Goldbarg & S. M. D. M. Maia & M. C. Goldbarg, 2020. "Empirical study of exact algorithms for the multi-objective spanning tree," Computational Optimization and Applications, Springer, vol. 75(2), pages 561-605, March.
    8. Lacour, Renaud, 2014. "Approches de résolution exacte et approchée en optimisation combinatoire multi-objectif, application au problème de l'arbre couvrant de poids minimal," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/14806 edited by Vanderpooten, Daniel.
    9. Cristina Requejo & Eulália Santos, 2020. "Efficient lower and upper bounds for the weight-constrained minimum spanning tree problem using simple Lagrangian based algorithms," Operational Research, Springer, vol. 20(4), pages 2467-2495, December.
    10. Delorme, Xavier & Gandibleux, Xavier & Degoutin, Fabien, 2010. "Evolutionary, constructive and hybrid procedures for the bi-objective set packing problem," European Journal of Operational Research, Elsevier, vol. 204(2), pages 206-217, July.
    11. Juan Villegas & Fernando Palacios & Andrés Medaglia, 2006. "Solution methods for the bi-objective (cost-coverage) unconstrained facility location problem with an illustrative example," Annals of Operations Research, Springer, vol. 147(1), pages 109-141, October.
    12. Zhou, Gengui & Min, Hokey & Gen, Mitsuo, 2003. "A genetic algorithm approach to the bi-criteria allocation of customers to warehouses," International Journal of Production Economics, Elsevier, vol. 86(1), pages 35-45, October.
    13. Wen, Hao & Sang, Song & Qiu, Chenhui & Du, Xiangrui & Zhu, Xiao & Shi, Qian, 2019. "A new optimization method of wind turbine airfoil performance based on Bessel equation and GABP artificial neural network," Energy, Elsevier, vol. 187(C).
    14. Arroyo, Jose Elias Claudio & Armentano, Vinicius Amaral, 2005. "Genetic local search for multi-objective flowshop scheduling problems," European Journal of Operational Research, Elsevier, vol. 167(3), pages 717-738, December.
    15. Holzmann, Tim & Smith, J.C., 2018. "Solving discrete multi-objective optimization problems using modified augmented weighted Tchebychev scalarizations," European Journal of Operational Research, Elsevier, vol. 271(2), pages 436-449.
    16. Banu Lokman & Murat Köksalan, 2013. "Finding all nondominated points of multi-objective integer programs," Journal of Global Optimization, Springer, vol. 57(2), pages 347-365, October.
    17. Ehrgott, Matthias & Skriver, Anders J. V., 2003. "Solving biobjective combinatorial max-ordering problems by ranking methods and a two-phases approach," European Journal of Operational Research, Elsevier, vol. 147(3), pages 657-664, June.
    18. Knowles, Joshua D. & Corne, David W., 2002. "Enumeration of Pareto optimal multi-criteria spanning trees - a proof of the incorrectness of Zhou and Gen's proposed algorithm," European Journal of Operational Research, Elsevier, vol. 143(3), pages 543-547, December.
    19. Diabat, Ali & Kannan, Devika & Kaliyan, Mathiyazhagan & Svetinovic, Davor, 2013. "An optimization model for product returns using genetic algorithms and artificial immune system," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 156-169.
    20. Michael Stiglmayr & José Rui Figueira & Kathrin Klamroth & Luís Paquete & Britta Schulze, 2022. "Decision space robustness for multi-objective integer linear programming," Annals of Operations Research, Springer, vol. 319(2), pages 1769-1791, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:159:y:2008:i:1:p:125-133:10.1007/s10479-007-0263-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.