IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v291y2020i1d10.1007_s10479-020-03540-9.html
   My bibliography  Save this article

A PSO based algorithm with an efficient optimal split procedure for the multiperiod vehicle routing problem with profit

Author

Listed:
  • Racha El-Hajj

    (Université Libanaise)

  • Rym Nesrine Guibadj

    (Université du Littoral Côte d’Opale)

  • Aziz Moukrim

    (Sorbonne Universités)

  • Mehdi Serairi

    (Sorbonne Universités)

Abstract

The multiperiod vehicle routing problem with profit (mVRPP) is a selective vehicle routing problem where the planning horizon of each vehicle is divided into several periods. The aim of solving mVRPP is to design service itineraries so that the total amount of collected profit is maximized and the travel time limit of each period is respected. This problem arises in many real life applications, as the one encountered in cash-in-transit industry. In this paper, we present a metaheuristic approach based on the particle swarm optimization algorithm (PSO) to solve the mVRPP. Our approach incorporates an efficient optimal split procedure and dedicated local search operators proposed to guarantee high search intensification. Experiments conducted on an mVRPP benchmark show that our algorithm outperforms the state of the art metaheuristic approaches in terms of performance and robustness. Our PSO algorithm determines all the already known optimal solutions within a negligible computational time and finds $$88$$ 88 strict improvements among the $$177$$ 177 instances of the benchmark.

Suggested Citation

  • Racha El-Hajj & Rym Nesrine Guibadj & Aziz Moukrim & Mehdi Serairi, 2020. "A PSO based algorithm with an efficient optimal split procedure for the multiperiod vehicle routing problem with profit," Annals of Operations Research, Springer, vol. 291(1), pages 281-316, August.
  • Handle: RePEc:spr:annopr:v:291:y:2020:i:1:d:10.1007_s10479-020-03540-9
    DOI: 10.1007/s10479-020-03540-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03540-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03540-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asma Ben-Said & Racha El-Hajj & Aziz Moukrim, 2019. "A variable space search heuristic for the Capacitated Team Orienteering Problem," Journal of Heuristics, Springer, vol. 25(2), pages 273-303, April.
    2. Ruslan Sadykov & François Vanderbeck, 2013. "Bin Packing with Conflicts: A Generic Branch-and-Price Algorithm," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 244-255, May.
    3. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    4. Morteza Keshtkaran & Koorush Ziarati & Andrea Bettinelli & Daniele Vigo, 2016. "Enhanced exact solution methods for the Team Orienteering Problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 591-601, January.
    5. Vansteenwegen, Pieter & Souffriau, Wouter & Oudheusden, Dirk Van, 2011. "The orienteering problem: A survey," European Journal of Operational Research, Elsevier, vol. 209(1), pages 1-10, February.
    6. Chao, I-Ming & Golden, Bruce L. & Wasil, Edward A., 1996. "The team orienteering problem," European Journal of Operational Research, Elsevier, vol. 88(3), pages 464-474, February.
    7. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    8. Dang, Duc-Cuong & Guibadj, Rym Nesrine & Moukrim, Aziz, 2013. "An effective PSO-inspired algorithm for the team orienteering problem," European Journal of Operational Research, Elsevier, vol. 229(2), pages 332-344.
    9. G. A. Croes, 1958. "A Method for Solving Traveling-Salesman Problems," Operations Research, INFORMS, vol. 6(6), pages 791-812, December.
    10. Zhang, Zizhen & Che, Oscar & Cheang, Brenda & Lim, Andrew & Qin, Hu, 2013. "A memetic algorithm for the multiperiod vehicle routing problem with profit," European Journal of Operational Research, Elsevier, vol. 229(3), pages 573-584.
    11. Koyuncu, Işıl & Yavuz, Mesut, 2019. "Duplicating nodes or arcs in green vehicle routing: A computational comparison of two formulations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 605-623.
    12. Ke, Liangjun & Zhai, Laipeng & Li, Jing & Chan, Felix T.S., 2016. "Pareto mimic algorithm: An approach to the team orienteering problem," Omega, Elsevier, vol. 61(C), pages 155-166.
    13. Dominique Feillet & Pierre Dejax & Michel Gendreau, 2005. "Traveling Salesman Problems with Profits," Transportation Science, INFORMS, vol. 39(2), pages 188-205, May.
    14. Labadie, Nacima & Mansini, Renata & Melechovský, Jan & Wolfler Calvo, Roberto, 2012. "The Team Orienteering Problem with Time Windows: An LP-based Granular Variable Neighborhood Search," European Journal of Operational Research, Elsevier, vol. 220(1), pages 15-27.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wanting Zhang & Ming Zeng & Peng Guo & Kun Wen, 2022. "Variable Neighborhood Search for Multi-Cycle Medical Waste Recycling Vehicle Routing Problem with Time Windows," IJERPH, MDPI, vol. 19(19), pages 1-25, October.
    2. Luciano Ferreira Cruz & Flavia Bernardo Pinto & Lucas Camilotti & Angelo Marcio Oliveira Santanna & Roberto Zanetti Freire & Leandro Santos Coelho, 2022. "Improved multiobjective differential evolution with spherical pruning algorithm for optimizing 3D printing technology parametrization process," Annals of Operations Research, Springer, vol. 319(2), pages 1565-1587, December.
    3. Antonin Novak & Zdenek Hanzalek, 2022. "Computing the execution probability of jobs with replication in mixed-criticality schedules," Annals of Operations Research, Springer, vol. 309(1), pages 209-232, February.
    4. Li, Ming & Shao, Saijun & Li, Yang & Zhang, Hua & Zhang, Nianwu & He, Yandong, 2022. "A Physical Internet (PI) based inland container transportation problem with selective non-containerized shipping requests," International Journal of Production Economics, Elsevier, vol. 245(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.
    2. Christos Orlis & Nicola Bianchessi & Roberto Roberti & Wout Dullaert, 2020. "The Team Orienteering Problem with Overlaps: An Application in Cash Logistics," Transportation Science, INFORMS, vol. 54(2), pages 470-487, March.
    3. Afsaneh Amiri & Majid Salari, 2019. "Time-constrained maximal covering routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 415-468, June.
    4. Balcik, Burcu, 2017. "Site selection and vehicle routing for post-disaster rapid needs assessment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 30-58.
    5. Orlis, Christos & Laganá, Demetrio & Dullaert, Wout & Vigo, Daniele, 2020. "Distribution with Quality of Service Considerations: The Capacitated Routing Problem with Profits and Service Level Requirements," Omega, Elsevier, vol. 93(C).
    6. Jost, Christian & Jungwirth, Alexander & Kolisch, Rainer & Schiffels, Sebastian, 2022. "Consistent vehicle routing with pickup decisions - Insights from sport academy training transfers," European Journal of Operational Research, Elsevier, vol. 298(1), pages 337-350.
    7. Kirac, Emre & Milburn, Ashlea Bennett, 2018. "A general framework for assessing the value of social data for disaster response logistics planning," European Journal of Operational Research, Elsevier, vol. 269(2), pages 486-500.
    8. Zhao, Yanlu & Alfandari, Laurent, 2020. "Design of diversified package tours for the digital travel industry : A branch-cut-and-price approach," European Journal of Operational Research, Elsevier, vol. 285(3), pages 825-843.
    9. Oktay Yılmaz & Ertan Yakıcı & Mumtaz Karatas, 2019. "A UAV location and routing problem with spatio-temporal synchronization constraints solved by ant colony optimization," Journal of Heuristics, Springer, vol. 25(4), pages 673-701, October.
    10. Xia, Jun & Wang, Kai & Wang, Shuaian, 2019. "Drone scheduling to monitor vessels in emission control areas," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 174-196.
    11. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    12. Rahma Lahyani & Mahdi Khemakhem & Frédéric Semet, 2017. "A unified matheuristic for solving multi-constrained traveling salesman problems with profits," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(3), pages 393-422, September.
    13. Ivanoe De Falco & Umberto Scafuri & Ernesto Tarantino, 2016. "Optimizing Personalized Touristic Itineraries by a Multiobjective Evolutionary Algorithm," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(06), pages 1269-1312, November.
    14. Bian, Zheyong & Liu, Xiang, 2018. "A real-time adjustment strategy for the operational level stochastic orienteering problem: A simulation-aided optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 246-266.
    15. Antonio R. Uguina & Juan F. Gomez & Javier Panadero & Anna Martínez-Gavara & Angel A. Juan, 2024. "A Learnheuristic Algorithm Based on Thompson Sampling for the Heterogeneous and Dynamic Team Orienteering Problem," Mathematics, MDPI, vol. 12(11), pages 1-19, June.
    16. Lei, Chao & Lin, Wei-Hua & Miao, Lixin, 2014. "A multicut L-shaped based algorithm to solve a stochastic programming model for the mobile facility routing and scheduling problem," European Journal of Operational Research, Elsevier, vol. 238(3), pages 699-710.
    17. Alejandro Estrada-Moreno & Albert Ferrer & Angel A. Juan & Javier Panadero & Adil Bagirov, 2020. "The Non-Smooth and Bi-Objective Team Orienteering Problem with Soft Constraints," Mathematics, MDPI, vol. 8(9), pages 1-16, September.
    18. Katharina Glock & Anne Meyer, 2020. "Mission Planning for Emergency Rapid Mapping with Drones," Transportation Science, INFORMS, vol. 54(2), pages 534-560, March.
    19. He, Mu & Wu, Qinghua & Benlic, Una & Lu, Yongliang & Chen, Yuning, 2024. "An effective multi-level memetic search with neighborhood reduction for the clustered team orienteering problem," European Journal of Operational Research, Elsevier, vol. 318(3), pages 778-801.
    20. Kim, Hyunjoon & Kim, Byung-In, 2022. "Hybrid dynamic programming with bounding algorithm for the multi-profit orienteering problem," European Journal of Operational Research, Elsevier, vol. 303(2), pages 550-566.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:291:y:2020:i:1:d:10.1007_s10479-020-03540-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.