IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v295y2021i3p893-907.html
   My bibliography  Save this article

An efficient variable neighborhood search for the Space-Free Multi-Row Facility Layout problem

Author

Listed:
  • Herrán, Alberto
  • Manuel Colmenar, J.
  • Duarte, Abraham

Abstract

The Space-Free Multi-Row Facility Layout problem (SF-MRFLP) seeks for a non-overlapping layout of departments (facilities) on a given number of rows satisfying the following constraints: no space is allowed between two adjacent facilities and the left-most department of the arrangement must have zero abscissa. The objective is to minimize the total communication cost among facilities. In this paper, a Variable Neighborhood Search (VNS) algorithm is proposed to solve this NP-Hard problem. It has practical applications in the context of the arrangement of rooms in buildings, semiconductor wafer fabrication, or flexible manufacturing systems. A thorough set of preliminary experiments is conducted to evaluate the influence of the proposed strategies and to tune the corresponding search parameters. The best variant of our algorithm is tested over a large set of 528 instances previously used in the related literature. Experimental results show that the proposed algorithm improves the state-of-the-art methods, reaching all the optimal values or, alternatively, the best-known values (if the optimum is unknown) but in considerably shorter computing times. These results are further confirmed by conducting a Bayesian statistical analysis.

Suggested Citation

  • Herrán, Alberto & Manuel Colmenar, J. & Duarte, Abraham, 2021. "An efficient variable neighborhood search for the Space-Free Multi-Row Facility Layout problem," European Journal of Operational Research, Elsevier, vol. 295(3), pages 893-907.
  • Handle: RePEc:eee:ejores:v:295:y:2021:i:3:p:893-907
    DOI: 10.1016/j.ejor.2021.03.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721002538
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.03.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pierre Hansen & Nenad Mladenović, 2014. "Variable Neighborhood Search," Springer Books, in: Edmund K. Burke & Graham Kendall (ed.), Search Methodologies, edition 2, chapter 0, pages 313-337, Springer.
    2. Loiola, Eliane Maria & de Abreu, Nair Maria Maia & Boaventura-Netto, Paulo Oswaldo & Hahn, Peter & Querido, Tania, 2007. "A survey for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 176(2), pages 657-690, January.
    3. Thomas A. Feo & Mauricio G. C. Resende & Stuart H. Smith, 1994. "A Greedy Randomized Adaptive Search Procedure for Maximum Independent Set," Operations Research, INFORMS, vol. 42(5), pages 860-878, October.
    4. Ahonen, H. & de Alvarenga, A.G. & Amaral, A.R.S., 2014. "Simulated annealing and tabu search approaches for the Corridor Allocation Problem," European Journal of Operational Research, Elsevier, vol. 232(1), pages 221-233.
    5. Ghosh, Diptesh & Kothari, Ravi, 2012. "Population Heuristics for the Corridor Allocation Problem," IIMA Working Papers WP2012-09-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    6. Anjos, Miguel F. & Vieira, Manuel V.C., 2017. "Mathematical optimization approaches for facility layout problems: The state-of-the-art and future research directions," European Journal of Operational Research, Elsevier, vol. 261(1), pages 1-16.
    7. A. M. Geoffrion & G. W. Graves, 1976. "Scheduling Parallel Production Lines with Changeover Costs: Practical Application of a Quadratic Assignment/ LP Approach," Operations Research, INFORMS, vol. 24(4), pages 595-610, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Song & Yang, Wei & Hanafi, Saïd & Wilbaut, Christophe & Wang, Yang, 2024. "Iterated local search with ejection chains for the space-free multi-row facility layout problem," European Journal of Operational Research, Elsevier, vol. 316(3), pages 873-886.
    2. Gintaras Palubeckis & Armantas Ostreika & Jūratė Platužienė, 2022. "A Variable Neighborhood Search Approach for the Dynamic Single Row Facility Layout Problem," Mathematics, MDPI, vol. 10(13), pages 1-27, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dahlbeck, Mirko & Fischer, Anja & Fischer, Frank, 2020. "Decorous combinatorial lower bounds for row layout problems," European Journal of Operational Research, Elsevier, vol. 286(3), pages 929-944.
    2. Wu, Song & Yang, Wei & Hanafi, Saïd & Wilbaut, Christophe & Wang, Yang, 2024. "Iterated local search with ejection chains for the space-free multi-row facility layout problem," European Journal of Operational Research, Elsevier, vol. 316(3), pages 873-886.
    3. Dahlbeck, Mirko & Fischer, Anja & Fischer, Frank & Hungerländer, Philipp & Maier, Kerstin, 2023. "Exact approaches for the combined cell layout problem," European Journal of Operational Research, Elsevier, vol. 305(2), pages 530-546.
    4. Anjos, Miguel F. & Fischer, Anja & Hungerländer, Philipp, 2018. "Improved exact approaches for row layout problems with departments of equal length," European Journal of Operational Research, Elsevier, vol. 270(2), pages 514-529.
    5. Junqi Liu & Zeqiang Zhang & Feng Chen & Silu Liu & Lixia Zhu, 2022. "A novel hybrid immune clonal selection algorithm for the constrained corridor allocation problem," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 953-972, April.
    6. Lucas A. Waddell & Jerry L. Phillips & Tianzhu Liu & Swarup Dhar, 2023. "An LP-based characterization of solvable QAP instances with chess-board and graded structures," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-23, July.
    7. Anjos, Miguel F. & Vieira, Manuel V.C., 2017. "Mathematical optimization approaches for facility layout problems: The state-of-the-art and future research directions," European Journal of Operational Research, Elsevier, vol. 261(1), pages 1-16.
    8. Eduardo G. Pardo & Mauricio Soto & Christopher Thraves, 2015. "Embedding signed graphs in the line," Journal of Combinatorial Optimization, Springer, vol. 29(2), pages 451-471, February.
    9. Palubeckis, Gintaras, 2015. "Fast simulated annealing for single-row equidistant facility layout," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 287-301.
    10. Feizollahi, Mohammad Javad & Feyzollahi, Hadi, 2015. "Robust quadratic assignment problem with budgeted uncertain flows," Operations Research Perspectives, Elsevier, vol. 2(C), pages 114-123.
    11. Torki, Abdolhamid & Yajima, Yatsutoshi & Enkawa, Takao, 1996. "A low-rank bilinear programming approach for sub-optimal solution of the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 94(2), pages 384-391, October.
    12. Fernando Stefanello & Vaneet Aggarwal & Luciana S. Buriol & Mauricio G. C. Resende, 2019. "Hybrid algorithms for placement of virtual machines across geo-separated data centers," Journal of Combinatorial Optimization, Springer, vol. 38(3), pages 748-793, October.
    13. Serigne Gueye & Philippe Michelon, 2005. "“Miniaturized” Linearizations for Quadratic 0/1 Problems," Annals of Operations Research, Springer, vol. 140(1), pages 235-261, November.
    14. Becker, Christian & Scholl, Armin, 2006. "A survey on problems and methods in generalized assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 694-715, February.
    15. A. R. S. Amaral, 2022. "A heuristic approach for the double row layout problem," Annals of Operations Research, Springer, vol. 316(2), pages 1-36, September.
    16. Xu Wang & Guohua Gan & Ling-Yun Wu, 2020. "Framework and algorithms for identifying honest blocks in blockchain," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-14, January.
    17. Coelho, V.N. & Grasas, A. & Ramalhinho, H. & Coelho, I.M. & Souza, M.J.F. & Cruz, R.C., 2016. "An ILS-based algorithm to solve a large-scale real heterogeneous fleet VRP with multi-trips and docking constraints," European Journal of Operational Research, Elsevier, vol. 250(2), pages 367-376.
    18. Jooken, Jorik & Leyman, Pieter & De Causmaecker, Patrick, 2022. "A new class of hard problem instances for the 0–1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 841-854.
    19. Raúl Martín-Santamaría & Ana D. López-Sánchez & María Luisa Delgado-Jalón & J. Manuel Colmenar, 2021. "An Efficient Algorithm for Crowd Logistics Optimization," Mathematics, MDPI, vol. 9(5), pages 1-19, March.
    20. Schirmer, Andreas & Riesenberg, Sven, 1997. "Parameterized heuristics for project scheduling: Biased random sampling methods," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 456, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:295:y:2021:i:3:p:893-907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.