IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v248y2016i2p415-427.html
   My bibliography  Save this article

Multiple-path selection for new highway alignments using discrete algorithms

Author

Listed:
  • Pushak, Yasha
  • Hare, Warren
  • Lucet, Yves

Abstract

This paper addresses the problem of finding multiple near-optimal, spatially-dissimilar paths that can be considered as alternatives in the decision making process, for finding optimal corridors in which to construct a new road. We further consider combinations of techniques for reducing the costs associated with the computation and increasing the accuracy of the cost formulation. Numerical results for five algorithms to solve the dissimilar multipath problem show that a “bidirectional approach” yields the fastest running times and the most robust algorithm. Further modifications of the algorithms to reduce the running time were tested and it is shown that running time can be reduced by an average of 56 percent without compromising the quality of the results.

Suggested Citation

  • Pushak, Yasha & Hare, Warren & Lucet, Yves, 2016. "Multiple-path selection for new highway alignments using discrete algorithms," European Journal of Operational Research, Elsevier, vol. 248(2), pages 415-427.
  • Handle: RePEc:eee:ejores:v:248:y:2016:i:2:p:415-427
    DOI: 10.1016/j.ejor.2015.07.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715006736
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.07.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duarte, Abraham & Marti, Rafael, 2007. "Tabu search and GRASP for the maximum diversity problem," European Journal of Operational Research, Elsevier, vol. 178(1), pages 71-84, April.
    2. Dan Trietsch, 1987. "Comprehensive Design of Highway Networks," Transportation Science, INFORMS, vol. 21(1), pages 26-35, February.
    3. Maria Scaparra & Richard Church & F. Medrano, 2014. "Corridor location: the multi-gateway shortest path model," Journal of Geographical Systems, Springer, vol. 16(3), pages 287-309, July.
    4. Jha, Manoj K. & Schonfeld, Paul, 2004. "A highway alignment optimization model using geographic information systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(6), pages 455-481, July.
    5. Jin Y. Yen, 1971. "Finding the K Shortest Loopless Paths in a Network," Management Science, INFORMS, vol. 17(11), pages 712-716, July.
    6. Dan Trietsch, 1987. "A Family of Methods for Preliminary Highway Alignment," Transportation Science, INFORMS, vol. 21(1), pages 17-25, February.
    7. Eugene L. Lawler, 1972. "A Procedure for Computing the K Best Solutions to Discrete Optimization Problems and Its Application to the Shortest Path Problem," Management Science, INFORMS, vol. 18(7), pages 401-405, March.
    8. Martí, Rafael & Campos, Vicente & Resende, Mauricio G.C. & Duarte, Abraham, 2015. "Multiobjective GRASP with Path Relinking," European Journal of Operational Research, Elsevier, vol. 240(1), pages 54-71.
    9. Hare, Warren L. & Koch, Valentin R. & Lucet, Yves, 2011. "Models and algorithms to improve earthwork operations in road design using mixed integer linear programming," European Journal of Operational Research, Elsevier, vol. 215(2), pages 470-480, December.
    10. Jong, Jyh-Cherng & Schonfeld, Paul, 2003. "An evolutionary model for simultaneously optimizing three-dimensional highway alignments," Transportation Research Part B: Methodological, Elsevier, vol. 37(2), pages 107-128, February.
    11. Dell'Olmo, Paolo & Gentili, Monica & Scozzari, Andrea, 2005. "On finding dissimilar Pareto-optimal paths," European Journal of Operational Research, Elsevier, vol. 162(1), pages 70-82, April.
    12. Akgun, Vedat & Erkut, Erhan & Batta, Rajan, 2000. "On finding dissimilar paths," European Journal of Operational Research, Elsevier, vol. 121(2), pages 232-246, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salvatore Antonio Biancardo & Francesco Avella & Ernesto Di Lisa & Xinqiang Chen & Francesco Abbondati & Gianluca Dell’Acqua, 2021. "Multiobjective Railway Alignment Optimization Using Ballastless Track and Reduced Cross-Section in Tunnel," Sustainability, MDPI, vol. 13(19), pages 1-19, September.
    2. García-Chan, N. & Alvarez-Vázquez, L.J. & Martínez, A. & Vázquez-Méndez, M.E., 2021. "Designing an ecologically optimized road corridor surrounding restricted urban areas: A mathematical methodology," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 745-759.
    3. Jianming Zhu & Shuyue Liu & Smita Ghosh, 2019. "Model and algorithm of routes planning for emergency relief distribution in disaster management with disaster information update," Journal of Combinatorial Optimization, Springer, vol. 38(1), pages 208-223, July.
    4. Hao Pu & Jia Xie & Paul Schonfeld & Taoran Song & Wei Li & Jie Wang & Jianping Hu, 2021. "Railway Alignment Optimization in Mountainous Regions Considering Spatial Geological Hazards: A Sustainable Safety Perspective," Sustainability, MDPI, vol. 13(4), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Eungcheol & Jha, Manoj K. & Son, Bongsoo, 2005. "Improving the computational efficiency of highway alignment optimization models through a stepwise genetic algorithms approach," Transportation Research Part B: Methodological, Elsevier, vol. 39(4), pages 339-360, May.
    2. Jha, Manoj K. & Schonfeld, Paul, 2004. "A highway alignment optimization model using geographic information systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(6), pages 455-481, July.
    3. Sandra Zajac, 2018. "On a two-phase solution approach for the bi-objective k-dissimilar vehicle routing problem," Journal of Heuristics, Springer, vol. 24(3), pages 515-550, June.
    4. TALARICO, Luca & SÖRENSEN, Kenneth & SPRINGAEL, Johan, 2013. "The k-dissimilar vehicle routing problem," Working Papers 2013029, University of Antwerp, Faculty of Business and Economics.
    5. Talarico, L. & Sörensen, K. & Springael, J., 2015. "The k-dissimilar vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 244(1), pages 129-140.
    6. Ghatee, Mehdi & Hashemi, S. Mehdi, 2009. "Traffic assignment model with fuzzy level of travel demand: An efficient algorithm based on quasi-Logit formulas," European Journal of Operational Research, Elsevier, vol. 194(2), pages 432-451, April.
    7. Francesca Guerriero & Roberto Musmanno & Valerio Lacagnina & Antonio Pecorella, 2001. "A Class of Label-Correcting Methods for the K Shortest Paths Problem," Operations Research, INFORMS, vol. 49(3), pages 423-429, June.
    8. Guazzelli, Cauê Sauter & Cunha, Claudio B., 2018. "Exploring K-best solutions to enrich network design decision-making," Omega, Elsevier, vol. 78(C), pages 139-164.
    9. Sébastien Giguère & François Laviolette & Mario Marchand & Denise Tremblay & Sylvain Moineau & Xinxia Liang & Éric Biron & Jacques Corbeil, 2015. "Machine Learning Assisted Design of Highly Active Peptides for Drug Discovery," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-21, April.
    10. Yinfeng Xu & Huili Zhang, 2015. "How much the grid network and rescuers’ communication can improve the rescue efficiency in worst-case analysis," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 1062-1076, November.
    11. Pascoal, Marta M.B. & Sedeño-Noda, Antonio, 2012. "Enumerating K best paths in length order in DAGs," European Journal of Operational Research, Elsevier, vol. 221(2), pages 308-316.
    12. Antonio Sedeño-Noda, 2016. "Ranking One Million Simple Paths in Road Networks," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-20, October.
    13. Nielsen, Lars Relund & Andersen, Kim Allan & Pretolani, Daniele, 2014. "Ranking paths in stochastic time-dependent networks," European Journal of Operational Research, Elsevier, vol. 236(3), pages 903-914.
    14. Huili Zhang & Yinfeng Xu & Xingang Wen, 2015. "Optimal shortest path set problem in undirected graphs," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 511-530, April.
    15. Fernández, Elena & Pozo, Miguel A. & Puerto, Justo & Scozzari, Andrea, 2017. "Ordered Weighted Average optimization in Multiobjective Spanning Tree Problem," European Journal of Operational Research, Elsevier, vol. 260(3), pages 886-903.
    16. Hoogeboom, Maaike & Dullaert, Wout, 2019. "Vehicle routing with arrival time diversification," European Journal of Operational Research, Elsevier, vol. 275(1), pages 93-107.
    17. Yücel, E. & Salman, F.S. & Arsik, I., 2018. "Improving post-disaster road network accessibility by strengthening links against failures," European Journal of Operational Research, Elsevier, vol. 269(2), pages 406-422.
    18. Mukund Pratap Singh & Pitam Singh & Priyamvada Singh, 2019. "Fuzzy AHP-based multi-criteria decision-making analysis for route alignment planning using geographic information system (GIS)," Journal of Geographical Systems, Springer, vol. 21(3), pages 395-432, September.
    19. Dominique Monnet & Warren Hare & Yves Lucet, 2020. "Fast feasibility check of the multi-material vertical alignment problem in road design," Computational Optimization and Applications, Springer, vol. 75(2), pages 515-536, March.
    20. Maren Martens & Martin Skutella, 2009. "Flows with unit path capacities and related packing and covering problems," Journal of Combinatorial Optimization, Springer, vol. 18(3), pages 272-293, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:248:y:2016:i:2:p:415-427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.