IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v237y2014i1p245-256.html
   My bibliography  Save this article

The uniqueness property for networks with several origin–destination pairs

Author

Listed:
  • Meunier, Frédéric
  • Pradeau, Thomas

Abstract

We consider congestion games on networks with nonatomic users and user-specific costs. We are interested in the uniqueness property defined by Milchtaich (2005) as the uniqueness of equilibrium flows for all assignments of strictly increasing cost functions. He settled the case with two-terminal networks. As a corollary of his result, it is possible to prove that some other networks have the uniqueness property as well by adding common fictitious origin and destination. In the present work, we find a necessary condition for networks with several origin–destination pairs to have the uniqueness property in terms of excluded minors or subgraphs. As a key result, we characterize completely bidirectional rings for which the uniqueness property holds: it holds precisely for nine networks and those obtained from them by elementary operations. For other bidirectional rings, we exhibit affine cost functions yielding to two distinct equilibrium flows. Related results are also proven. For instance, we characterize networks having the uniqueness property for any choice of origin–destination pairs.

Suggested Citation

  • Meunier, Frédéric & Pradeau, Thomas, 2014. "The uniqueness property for networks with several origin–destination pairs," European Journal of Operational Research, Elsevier, vol. 237(1), pages 245-256.
  • Handle: RePEc:eee:ejores:v:237:y:2014:i:1:p:245-256
    DOI: 10.1016/j.ejor.2014.01.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714000629
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.01.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hideo Konishi, 2004. "Uniqueness of User Equilibrium in Transportation Networks with Heterogeneous Commuters," Transportation Science, INFORMS, vol. 38(3), pages 315-330, August.
    2. Young-Soo Myung & Hu-Gon Kim & Dong-Wan Tcha, 1997. "Optimal Load Balancing on Sonet Bidirectional Rings," Operations Research, INFORMS, vol. 45(1), pages 148-152, February.
    3. Igal Milchtaich, 2005. "Topological Conditions for Uniqueness of Equilibrium in Networks," Mathematics of Operations Research, INFORMS, vol. 30(1), pages 225-244, February.
    4. Roberto Cominetti & José R. Correa & Nicolás E. Stier-Moses, 2009. "The Impact of Oligopolistic Competition in Networks," Operations Research, INFORMS, vol. 57(6), pages 1421-1437, December.
    5. Knight, Vincent A. & Harper, Paul R., 2013. "Selfish routing in public services," European Journal of Operational Research, Elsevier, vol. 230(1), pages 122-132.
    6. Bauso, Dario & Giarré, Laura & Pesenti, Raffaele, 2009. "Distributed consensus in noncooperative inventory games," European Journal of Operational Research, Elsevier, vol. 192(3), pages 866-878, February.
    7. Milchtaich, Igal, 1996. "Congestion Games with Player-Specific Payoff Functions," Games and Economic Behavior, Elsevier, vol. 13(1), pages 111-124, March.
    8. Igal Milchtaich, 2000. "Generic Uniqueness of Equilibrium in Large Crowding Games," Mathematics of Operations Research, INFORMS, vol. 25(3), pages 349-364, August.
    9. Oran Richman & Nahum Shimkin, 2007. "Topological Uniqueness of the Nash Equilibrium for Selfish Routing with Atomic Users," Mathematics of Operations Research, INFORMS, vol. 32(1), pages 215-232, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wan, Cheng, 2016. "Strategic decentralization in binary choice composite congestion games," European Journal of Operational Research, Elsevier, vol. 250(2), pages 531-542.
    2. Cominetti, Roberto & Dose, Valerio & Scarsini, Marco, 2024. "Monotonicity of equilibria in nonatomic congestion games," European Journal of Operational Research, Elsevier, vol. 316(2), pages 754-766.
    3. Jacquot, Paulin & Wan, Cheng, 2022. "Nonatomic aggregative games with infinitely many types," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1149-1165.
    4. Cheng Wan, 2016. "Strategic decentralization in binary choice composite congestion games," Post-Print hal-02885837, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Umang Bhaskar & Lisa Fleischer & Darrell Hoy & Chien-Chung Huang, 2015. "On the Uniqueness of Equilibrium in Atomic Splittable Routing Games," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 634-654, March.
    2. Cheng Wan, 2016. "Strategic decentralization in binary choice composite congestion games," Post-Print hal-02885837, HAL.
    3. Wan, Cheng, 2016. "Strategic decentralization in binary choice composite congestion games," European Journal of Operational Research, Elsevier, vol. 250(2), pages 531-542.
    4. Cominetti, Roberto & Dose, Valerio & Scarsini, Marco, 2024. "Monotonicity of equilibria in nonatomic congestion games," European Journal of Operational Research, Elsevier, vol. 316(2), pages 754-766.
    5. Igal Milchtaich, 2015. "Network topology and equilibrium existence in weighted network congestion games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(3), pages 515-541, August.
    6. Igal Milchtaich, 2005. "Topological Conditions for Uniqueness of Equilibrium in Networks," Mathematics of Operations Research, INFORMS, vol. 30(1), pages 225-244, February.
    7. Tobias Harks & Max Klimm, 2012. "On the Existence of Pure Nash Equilibria in Weighted Congestion Games," Mathematics of Operations Research, INFORMS, vol. 37(3), pages 419-436, August.
    8. Satoru Fujishige & Michel X. Goemans & Tobias Harks & Britta Peis & Rico Zenklusen, 2017. "Matroids Are Immune to Braess’ Paradox," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 745-761, August.
    9. Tobias Harks & Veerle Timmermans, 2018. "Uniqueness of equilibria in atomic splittable polymatroid congestion games," Journal of Combinatorial Optimization, Springer, vol. 36(3), pages 812-830, October.
    10. Igal Milchtaich, 2003. "Topological Conditions for Uniqueness of Equilibrium in Networks," Working Papers 2003-01, Bar-Ilan University, Department of Economics.
    11. Hideo Konishi, 2004. "Uniqueness of User Equilibrium in Transportation Networks with Heterogeneous Commuters," Transportation Science, INFORMS, vol. 38(3), pages 315-330, August.
    12. Wang, Judith Y.T. & Ehrgott, Matthias, 2013. "Modelling route choice behaviour in a tolled road network with a time surplus maximisation bi-objective user equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 342-360.
    13. Cheng Wan, 2012. "Coalitions in Nonatomic Network Congestion Games," Post-Print hal-02885914, HAL.
    14. Jessica L. Heier Stamm & Nicoleta Serban & Julie Swann & Pascale Wortley, 2017. "Quantifying and explaining accessibility with application to the 2009 H1N1 vaccination campaign," Health Care Management Science, Springer, vol. 20(1), pages 76-93, March.
    15. Ryo Kawasaki & Hideo Konishi & Junki Yukawa, 2023. "Equilibria in bottleneck games," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(3), pages 649-685, September.
    16. Hota, Ashish R. & Garg, Siddharth & Sundaram, Shreyas, 2016. "Fragility of the commons under prospect-theoretic risk attitudes," Games and Economic Behavior, Elsevier, vol. 98(C), pages 135-164.
    17. Yannai A. Gonczarowski & Moshe Tennenholtz, 2014. "Cascading to Equilibrium: Hydraulic Computation of Equilibria in Resource Selection Games," Discussion Paper Series dp673, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    18. Milchtaich, Igal, 2006. "Network topology and the efficiency of equilibrium," Games and Economic Behavior, Elsevier, vol. 57(2), pages 321-346, November.
    19. Vasilis Gkatzelis & Konstantinos Kollias & Tim Roughgarden, 2016. "Optimal Cost-Sharing in General Resource Selection Games," Operations Research, INFORMS, vol. 64(6), pages 1230-1238, December.
    20. Holzman, Ron & Law-yone (Lev-tov), Nissan, 2003. "Network structure and strong equilibrium in route selection games," Mathematical Social Sciences, Elsevier, vol. 46(2), pages 193-205, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:237:y:2014:i:1:p:245-256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.