IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v234y2014i2p469-480.html
   My bibliography  Save this article

Mean–variance optimal portfolios in the presence of a benchmark with applications to fraud detection

Author

Listed:
  • Bernard, C.
  • Vanduffel, S.

Abstract

We first study mean–variance efficient portfolios when there are no trading constraints and show that optimal strategies perform poorly in bear markets. We then assume that investors use a stochastic benchmark (linked to the market) as a reference portfolio. We derive mean–variance efficient portfolios when investors aim to achieve a given correlation (or a given dependence structure) with this benchmark. We also provide upper bounds on Sharpe ratios and show how these bounds can be useful for fraud detection. For example, it is shown that under some conditions it is not possible for investment funds to display a negative correlation with the financial market and to have a positive Sharpe ratio. All the results are illustrated in a Black–Scholes market.

Suggested Citation

  • Bernard, C. & Vanduffel, S., 2014. "Mean–variance optimal portfolios in the presence of a benchmark with applications to fraud detection," European Journal of Operational Research, Elsevier, vol. 234(2), pages 469-480.
  • Handle: RePEc:eee:ejores:v:234:y:2014:i:2:p:469-480
    DOI: 10.1016/j.ejor.2013.06.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713005110
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.06.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew E. B. Lim, 2004. "Quadratic Hedging and Mean-Variance Portfolio Selection with Random Parameters in an Incomplete Market," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 132-161, February.
    2. Sharpe, William F., 1967. "Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 2(2), pages 76-84, June.
    3. R.H. Tütüncü & M. Koenig, 2004. "Robust Asset Allocation," Annals of Operations Research, Springer, vol. 132(1), pages 157-187, November.
    4. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    5. Jianming Xia & Jia‐An Yan, 2006. "Markowitz'S Portfolio Optimization In An Incomplete Market," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 203-216, January.
    6. William Goetzmann & Jonathan Ingersoll & Matthew I. Spiegel & Ivo Welch, 2002. "Sharpening Sharpe Ratios," NBER Working Papers 9116, National Bureau of Economic Research, Inc.
    7. Jonathan Ingersoll & Ivo Welch, 2007. "Portfolio Performance Manipulation and Manipulation-proof Performance Measures," The Review of Financial Studies, Society for Financial Studies, vol. 20(5), pages 1503-1546, 2007 17.
    8. Zhang, Wei-Guo & Zhang, Xi-Li & Xiao, Wei-Lin, 2009. "Portfolio selection under possibilistic mean-variance utility and a SMO algorithm," European Journal of Operational Research, Elsevier, vol. 197(2), pages 693-700, September.
    9. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    10. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    11. Wang, J. & Forsyth, P.A., 2011. "Continuous time mean variance asset allocation: A time-consistent strategy," European Journal of Operational Research, Elsevier, vol. 209(2), pages 184-201, March.
    12. Isabelle Huault & V. Perret & S. Charreire-Petit, 2007. "Management," Post-Print halshs-00337676, HAL.
    13. Lionel Martellini & Branko Uroševi'{c}, 2006. "Static Mean-Variance Analysis with Uncertain Time Horizon," Management Science, INFORMS, vol. 52(6), pages 955-964, June.
    14. MOSSIN, Jan, 1968. "Optimal multiperiod portfolio policies," LIDAM Reprints CORE 19, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    15. Leung, Pui-Lam & Ng, Hon-Yip & Wong, Wing-Keung, 2012. "An improved estimation to make Markowitz’s portfolio optimization theory users friendly and estimation accurate with application on the US stock market investment," European Journal of Operational Research, Elsevier, vol. 222(1), pages 85-95.
    16. Huyên Pham, 2000. "On quadratic hedging in continuous time," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(2), pages 315-339, April.
    17. Pelsser, Antoon & Vorst, Ton, 1996. "Transaction costs and efficiency of portfolio strategies," European Journal of Operational Research, Elsevier, vol. 91(2), pages 250-263, June.
    18. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    19. D. Goldfarb & G. Iyengar, 2003. "Robust Portfolio Selection Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 1-38, February.
    20. Daniel G. Goldstein & Eric J. Johnson & William F. Sharpe, 2008. "Choosing Outcomes versus Choosing Products: Consumer-Focused Retirement Investment Advice," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 35(3), pages 440-456, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farzad Pourbabaee & Minsuk Kwak & Traian A. Pirvu, 2014. "Risk minimization and portfolio diversification," Papers 1411.6657, arXiv.org, revised Dec 2014.
    2. Carole Bernard & Franck Moraux & Ludger R�schendorf & Steven Vanduffel, 2015. "Optimal payoffs under state-dependent preferences," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1157-1173, July.
    3. Farzad Pourbabaee & Minsuk Kwak & Traian A. Pirvu, 2016. "Risk minimization and portfolio diversification," Quantitative Finance, Taylor & Francis Journals, vol. 16(9), pages 1325-1332, September.
    4. Bernardo D'Auria & Jos'e Antonio Salmer'on, 2017. "Optimal portfolios with anticipating information on the stochastic interest rate," Papers 1711.03642, arXiv.org, revised Jul 2024.
    5. Aditya Maheshwari & Traian A. Pirvu, 2020. "Portfolio Optimization under Correlation Constraint," Risks, MDPI, vol. 8(1), pages 1-18, February.
    6. Shuzhen Yang, 2020. "Bellman type strategy for the continuous time mean-variance model," Papers 2005.01904, arXiv.org, revised Jul 2020.
    7. L. Rüschendorf & Steven Vanduffel, 2020. "On the construction of optimal payoffs," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 129-153, June.
    8. Giuzio, Margherita & Ferrari, Davide & Paterlini, Sandra, 2016. "Sparse and robust normal and t- portfolios by penalized Lq-likelihood minimization," European Journal of Operational Research, Elsevier, vol. 250(1), pages 251-261.
    9. Galeotti, Marcello & Rabitti, Giovanni & Vannucci, Emanuele, 2020. "An evolutionary approach to fraud management," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1167-1177.
    10. Philippe Bernard & Najat El Mekkaoui De Freitas & Bertrand B. Maillet, 2022. "A financial fraud detection indicator for investors: an IDeA," Annals of Operations Research, Springer, vol. 313(2), pages 809-832, June.
    11. Shuzhen Yang, 2020. "Discrete time multi-period mean-variance model: Bellman type strategy and Empirical analysis," Papers 2011.10966, arXiv.org.
    12. Bernard, Carole & Vanduffel, Steven & Ye, Jiang, 2019. "Optimal strategies under Omega ratio," European Journal of Operational Research, Elsevier, vol. 275(2), pages 755-767.
    13. Frank Schuhmacher & Hendrik Kohrs & Benjamin R. Auer, 2021. "Justifying Mean-Variance Portfolio Selection when Asset Returns Are Skewed," Management Science, INFORMS, vol. 67(12), pages 7812-7824, December.
    14. Aditya Maheshwari & Traian Pirvu, 2019. "Portfolio Optimization under Correlation Constraint," Papers 1912.12521, arXiv.org.
    15. Bodnar, Taras & Mazur, Stepan & Okhrin, Yarema, 2017. "Bayesian estimation of the global minimum variance portfolio," European Journal of Operational Research, Elsevier, vol. 256(1), pages 292-307.
    16. Pieter M. van Staden & Peter A. Forsyth & Yuying Li, 2023. "A parsimonious neural network approach to solve portfolio optimization problems without using dynamic programming," Papers 2303.08968, arXiv.org.
    17. van Staden, Pieter M. & Forsyth, Peter A. & Li, Yuying, 2024. "Across-time risk-aware strategies for outperforming a benchmark," European Journal of Operational Research, Elsevier, vol. 313(2), pages 776-800.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    2. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    3. Kim, Woo Chang & Kim, Min Jeong & Kim, Jang Ho & Fabozzi, Frank J., 2014. "Robust portfolios that do not tilt factor exposure," European Journal of Operational Research, Elsevier, vol. 234(2), pages 411-421.
    4. Xiangyu Cui & Duan Li & Xun Li, 2014. "Mean-Variance Policy for Discrete-time Cone Constrained Markets: The Consistency in Efficiency and Minimum-Variance Signed Supermartingale Measure," Papers 1403.0718, arXiv.org.
    5. Ashrafi, Hedieh & Thiele, Aurélie C., 2021. "A study of robust portfolio optimization with European options using polyhedral uncertainty sets," Operations Research Perspectives, Elsevier, vol. 8(C).
    6. F. Cong & C. W. Oosterlee, 2017. "On Robust Multi-Period Pre-Commitment And Time-Consistent Mean-Variance Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-26, November.
    7. Zeng, Yan & Li, Zhongfei & Lai, Yongzeng, 2013. "Time-consistent investment and reinsurance strategies for mean–variance insurers with jumps," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 498-507.
    8. Kim, Jang Ho & Kim, Woo Chang & Fabozzi, Frank J., 2013. "Composition of robust equity portfolios," Finance Research Letters, Elsevier, vol. 10(2), pages 72-81.
    9. Li, Yongwu & Qiao, Han & Wang, Shouyang & Zhang, Ling, 2015. "Time-consistent investment strategy under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 187-197.
    10. Huang, Dashan & Zhu, Shu-Shang & Fabozzi, Frank J. & Fukushima, Masao, 2008. "Portfolio selection with uncertain exit time: A robust CVaR approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(2), pages 594-623, February.
    11. Huang, Dashan & Zhu, Shushang & Fabozzi, Frank J. & Fukushima, Masao, 2010. "Portfolio selection under distributional uncertainty: A relative robust CVaR approach," European Journal of Operational Research, Elsevier, vol. 203(1), pages 185-194, May.
    12. van Staden, Pieter M. & Dang, Duy-Minh & Forsyth, Peter A., 2021. "The surprising robustness of dynamic Mean-Variance portfolio optimization to model misspecification errors," European Journal of Operational Research, Elsevier, vol. 289(2), pages 774-792.
    13. Raphael Hauser & Vijay Krishnamurthy & Reha Tutuncu, 2013. "Relative Robust Portfolio Optimization," Papers 1305.0144, arXiv.org, revised May 2013.
    14. Gregory, Christine & Darby-Dowman, Ken & Mitra, Gautam, 2011. "Robust optimization and portfolio selection: The cost of robustness," European Journal of Operational Research, Elsevier, vol. 212(2), pages 417-428, July.
    15. Castellano, Rosella & Cerqueti, Roy, 2014. "Mean–Variance portfolio selection in presence of infrequently traded stocks," European Journal of Operational Research, Elsevier, vol. 234(2), pages 442-449.
    16. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    17. Plachel, Lukas, 2019. "A unified model for regularized and robust portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    18. Kim, Woo Chang & Kim, Jang Ho & Mulvey, John M. & Fabozzi, Frank J., 2015. "Focusing on the worst state for robust investing," International Review of Financial Analysis, Elsevier, vol. 39(C), pages 19-31.
    19. De Gennaro Aquino, Luca & Sornette, Didier & Strub, Moris S., 2023. "Portfolio selection with exploration of new investment assets," European Journal of Operational Research, Elsevier, vol. 310(2), pages 773-792.
    20. Zymler, Steve & Rustem, Berç & Kuhn, Daniel, 2011. "Robust portfolio optimization with derivative insurance guarantees," European Journal of Operational Research, Elsevier, vol. 210(2), pages 410-424, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:234:y:2014:i:2:p:469-480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.