IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2303.08968.html
   My bibliography  Save this paper

A parsimonious neural network approach to solve portfolio optimization problems without using dynamic programming

Author

Listed:
  • Pieter M. van Staden
  • Peter A. Forsyth
  • Yuying Li

Abstract

We present a parsimonious neural network approach, which does not rely on dynamic programming techniques, to solve dynamic portfolio optimization problems subject to multiple investment constraints. The number of parameters of the (potentially deep) neural network remains independent of the number of portfolio rebalancing events, and in contrast to, for example, reinforcement learning, the approach avoids the computation of high-dimensional conditional expectations. As a result, the approach remains practical even when considering large numbers of underlying assets, long investment time horizons or very frequent rebalancing events. We prove convergence of the numerical solution to the theoretical optimal solution of a large class of problems under fairly general conditions, and present ground truth analyses for a number of popular formulations, including mean-variance and mean-conditional value-at-risk problems. We also show that it is feasible to solve Sortino ratio-inspired objectives (penalizing only the variance of wealth outcomes below the mean) in dynamic trading settings with the proposed approach. Using numerical experiments, we demonstrate that if the investment objective functional is separable in the sense of dynamic programming, the correct time-consistent optimal investment strategy is recovered, otherwise we obtain the correct pre-commitment (time-inconsistent) investment strategy. The proposed approach remains agnostic as to the underlying data generating assumptions, and results are illustrated using (i) parametric models for underlying asset returns, (ii) stationary block bootstrap resampling of empirical returns, and (iii) generative adversarial network (GAN)-generated synthetic asset returns.

Suggested Citation

  • Pieter M. van Staden & Peter A. Forsyth & Yuying Li, 2023. "A parsimonious neural network approach to solve portfolio optimization problems without using dynamic programming," Papers 2303.08968, arXiv.org.
  • Handle: RePEc:arx:papers:2303.08968
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2303.08968
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elena Vigna, 2020. "On Time Consistency For Mean-Variance Portfolio Selection," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(06), pages 1-22, September.
    2. Bernard, C. & Vanduffel, S., 2014. "Mean–variance optimal portfolios in the presence of a benchmark with applications to fraud detection," European Journal of Operational Research, Elsevier, vol. 234(2), pages 469-480.
    3. A. Shapiro & Y. Wardi, 1996. "Convergence Analysis of Stochastic Algorithms," Mathematics of Operations Research, INFORMS, vol. 21(3), pages 615-628, August.
    4. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    5. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    6. Alexander, S. & Coleman, T.F. & Li, Y., 2006. "Minimizing CVaR and VaR for a portfolio of derivatives," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 583-605, February.
    7. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    8. Tomas Björk & Mariana Khapko & Agatha Murgoci, 2017. "On time-inconsistent stochastic control in continuous time," Finance and Stochastics, Springer, vol. 21(2), pages 331-360, April.
    9. Anarkulova, Aizhan & Cederburg, Scott & O’Doherty, Michael S., 2022. "Stocks for the long run? Evidence from a broad sample of developed markets," Journal of Financial Economics, Elsevier, vol. 143(1), pages 409-433.
    10. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    11. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    12. Elena Vigna, 2014. "On efficiency of mean--variance based portfolio selection in defined contribution pension schemes," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 237-258, February.
    13. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    14. Dang, D.M. & Forsyth, P.A., 2016. "Better than pre-commitment mean-variance portfolio allocation strategies: A semi-self-financing Hamilton–Jacobi–Bellman equation approach," European Journal of Operational Research, Elsevier, vol. 250(3), pages 827-841.
    15. Hubert Dichtl & Wolfgang Drobetz & Martin Wambach, 2016. "Testing rebalancing strategies for stock-bond portfolios across different asset allocations," Applied Economics, Taylor & Francis Journals, vol. 48(9), pages 772-788, February.
    16. Tomas Björk & Agatha Murgoci, 2014. "A theory of Markovian time-inconsistent stochastic control in discrete time," Finance and Stochastics, Springer, vol. 18(3), pages 545-592, July.
    17. Chendi Ni & Yuying Li & Peter Forsyth & Ray Carroll, 2022. "Optimal asset allocation for outperforming a stochastic benchmark target," Quantitative Finance, Taylor & Francis Journals, vol. 22(9), pages 1595-1626, September.
    18. Peter A. Forsyth, 2022. "A Stochastic Control Approach to Defined Contribution Plan Decumulation: “The Nastiest, Hardest Problem in Finance”," North American Actuarial Journal, Taylor & Francis Journals, vol. 26(2), pages 227-251, April.
    19. Peter A. Forsyth & Kenneth R. Vetzal, 2017. "Dynamic mean variance asset allocation: Tests for robustness," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-37, June.
    20. Christopher W. Miller & Insoon Yang, 2015. "Optimal Control of Conditional Value-at-Risk in Continuous Time," Papers 1512.05015, arXiv.org, revised Jan 2017.
    21. Ziming Gao & Yuan Gao & Yi Hu & Zhengyong Jiang & Jionglong Su, 2020. "Application of Deep Q-Network in Portfolio Management," Papers 2003.06365, arXiv.org.
    22. Philippe Cogneau & Valeri Zakamouline, 2013. "Block bootstrap methods and the choice of stocks for the long run," Quantitative Finance, Taylor & Francis Journals, vol. 13(9), pages 1443-1457, September.
    23. Li, Yuying & Forsyth, Peter A., 2019. "A data-driven neural network approach to optimal asset allocation for target based defined contribution pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 189-204.
    24. Peter A. Forsyth & Kenneth R. Vetzal & Graham Westmacott, 2019. "Management of Portfolio Depletion Risk through Optimal Life Cycle Asset Allocation," North American Actuarial Journal, Taylor & Francis Journals, vol. 23(3), pages 447-468, July.
    25. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suriya Kumacheva & Vitalii Novgorodtcev, 2024. "On the Gradient Method in One Portfolio Management Problem," Mathematics, MDPI, vol. 12(19), pages 1-14, October.
    2. Kristoffer Andersson & Cornelis W. Oosterlee, 2023. "D-TIPO: Deep time-inconsistent portfolio optimization with stocks and options," Papers 2308.10556, arXiv.org, revised Sep 2023.
    3. Rong Du & Duy-Minh Dang, 2023. "Fourier Neural Network Approximation of Transition Densities in Finance," Papers 2309.03966, arXiv.org, revised Sep 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Staden, Pieter M. & Dang, Duy-Minh & Forsyth, Peter A., 2021. "The surprising robustness of dynamic Mean-Variance portfolio optimization to model misspecification errors," European Journal of Operational Research, Elsevier, vol. 289(2), pages 774-792.
    2. Zhang, Hanwen & Dang, Duy-Minh, 2024. "A monotone numerical integration method for mean–variance portfolio optimization under jump-diffusion models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 112-140.
    3. van Staden, Pieter M. & Forsyth, Peter A. & Li, Yuying, 2024. "Across-time risk-aware strategies for outperforming a benchmark," European Journal of Operational Research, Elsevier, vol. 313(2), pages 776-800.
    4. Chendi Ni & Yuying Li & Peter A. Forsyth, 2023. "Neural Network Approach to Portfolio Optimization with Leverage Constraints:a Case Study on High Inflation Investment," Papers 2304.05297, arXiv.org, revised May 2023.
    5. Hanwen Zhang & Duy-Minh Dang, 2023. "A monotone numerical integration method for mean-variance portfolio optimization under jump-diffusion models," Papers 2309.05977, arXiv.org.
    6. Marc Chen & Mohammad Shirazi & Peter A. Forsyth & Yuying Li, 2023. "Machine Learning and Hamilton-Jacobi-Bellman Equation for Optimal Decumulation: a Comparison Study," Papers 2306.10582, arXiv.org.
    7. Peter A. Forsyth & Kenneth R. Vetzal & G. Westmacott, 2022. "Optimal performance of a tontine overlay subject to withdrawal constraints," Papers 2211.10509, arXiv.org.
    8. Li, Yuying & Forsyth, Peter A., 2019. "A data-driven neural network approach to optimal asset allocation for target based defined contribution pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 189-204.
    9. Van Staden, Pieter M. & Dang, Duy-Minh & Forsyth, Peter A., 2018. "Time-consistent mean–variance portfolio optimization: A numerical impulse control approach," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 9-28.
    10. Forsyth, Peter A., 2020. "Optimal dynamic asset allocation for DC plan accumulation/decumulation: Ambition-CVAR," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 230-245.
    11. Peter A. Forsyth & Kenneth R. Vetzal, 2019. "Defined Contribution Pension Plans: Who Has Seen the Risk?," JRFM, MDPI, vol. 12(2), pages 1-27, April.
    12. P. A. Forsyth & K. R. Vetzal, 2017. "Robust Asset Allocation For Long-Term Target-Based Investing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 1-32, May.
    13. Peter A. Forsyth & Kenneth R. Vetzal, 2017. "Dynamic mean variance asset allocation: Tests for robustness," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-37, June.
    14. Forsyth, Peter A., 2022. "Short term decumulation strategies for underspending retirees," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 56-74.
    15. Peter A. Forsyth, 2020. "A Stochastic Control Approach to Defined Contribution Plan Decumulation: "The Nastiest, Hardest Problem in Finance"," Papers 2008.06598, arXiv.org.
    16. Zhiping Chen & Liyuan Wang & Ping Chen & Haixiang Yao, 2019. "Continuous-Time Mean–Variance Optimization For Defined Contribution Pension Funds With Regime-Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-33, September.
    17. Lei Shi, 2010. "Portfolio Analysis and Equilibrium Asset Pricing with Heterogeneous Beliefs," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 9, July-Dece.
    18. Lei Shi, 2010. "Portfolio Analysis and Equilibrium Asset Pricing with Heterogeneous Beliefs," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2010, January-A.
    19. Duy-Minh Dang & P. A. Forsyth & K. R. Vetzal, 2017. "The 4% strategy revisited: a pre-commitment mean-variance optimal approach to wealth management," Quantitative Finance, Taylor & Francis Journals, vol. 17(3), pages 335-351, March.
    20. Bian, Lihua & Li, Zhongfei & Yao, Haixiang, 2018. "Pre-commitment and equilibrium investment strategies for the DC pension plan with regime switching and a return of premiums clause," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 78-94.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2303.08968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.