IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2011.10966.html
   My bibliography  Save this paper

Discrete time multi-period mean-variance model: Bellman type strategy and Empirical analysis

Author

Listed:
  • Shuzhen Yang

Abstract

In this paper, we attempt to introduce the Bellman principle for a discrete time multi-period mean-variance model. Based on this new take on the Bellman principle, we obtain a dynamic time-consistent optimal strategy and related efficient frontier. Furthermore, we develop a varying investment period discrete time multi-period mean-variance model and obtain a related dynamic optimal strategy and an optimal investment period. This paper compares the highlighted dynamic optimal strategies of this study with the 1/n equality strategy, and shows that we can secure a higher return with a smaller risk based on the dynamic optimal strategies.

Suggested Citation

  • Shuzhen Yang, 2020. "Discrete time multi-period mean-variance model: Bellman type strategy and Empirical analysis," Papers 2011.10966, arXiv.org.
  • Handle: RePEc:arx:papers:2011.10966
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2011.10966
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Bensoussan & K. C. J. Sung & S. C. P. Yam & S. P. Yung, 2016. "Linear-Quadratic Mean Field Games," Journal of Optimization Theory and Applications, Springer, vol. 169(2), pages 496-529, May.
    2. Shuzhen Yang, 2020. "Bellman type strategy for the continuous time mean-variance model," Papers 2005.01904, arXiv.org, revised Jul 2020.
    3. Ying Hu & Hanqing Jin & Xun Yu Zhou, 2012. "Time-Inconsistent Stochastic Linear--Quadratic Control," Post-Print hal-00691816, HAL.
    4. Andrew E. B. Lim, 2004. "Quadratic Hedging and Mean-Variance Portfolio Selection with Random Parameters in an Incomplete Market," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 132-161, February.
    5. Bi, Junna & Jin, Hanqing & Meng, Qingbin, 2018. "Behavioral mean-variance portfolio selection," European Journal of Operational Research, Elsevier, vol. 271(2), pages 644-663.
    6. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    7. Bernard, C. & Vanduffel, S., 2014. "Mean–variance optimal portfolios in the presence of a benchmark with applications to fraud detection," European Journal of Operational Research, Elsevier, vol. 234(2), pages 469-480.
    8. Amine Ismail & Huyên Pham, 2019. "Robust Markowitz mean‐variance portfolio selection under ambiguous covariance matrix," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 174-207, January.
    9. Markowitz, Harry, 2014. "Mean–variance approximations to expected utility," European Journal of Operational Research, Elsevier, vol. 234(2), pages 346-355.
    10. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    11. Philip H. Dybvig, 1988. "Inefficient Dynamic Portfolio Strategies or How to Throw Away a Million Dollars in the Stock Market," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 67-88.
    12. Henry R. Richardson, 1989. "A Minimum Variance Result in Continuous Trading Portfolio Optimization," Management Science, INFORMS, vol. 35(9), pages 1045-1055, September.
    13. Isabelle Bajeux-Besnainou & Roland Portait, 1998. "Dynamic Asset Allocation in a Mean-Variance Framework," Management Science, INFORMS, vol. 44(11-Part-2), pages 79-95, November.
    14. Merton, Robert C., 1972. "An Analytic Derivation of the Efficient Portfolio Frontier," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(4), pages 1851-1872, September.
    15. Jianming Xia, 2005. "Mean–Variance Portfolio Choice: Quadratic Partial Hedging," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 533-538, July.
    16. Tomasz R. Bielecki & Hanqing Jin & Stanley R. Pliska & Xun Yu Zhou, 2005. "Continuous‐Time Mean‐Variance Portfolio Selection With Bankruptcy Prohibition," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 213-244, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuzhen Yang, 2020. "Bellman type strategy for the continuous time mean-variance model," Papers 2005.01904, arXiv.org, revised Jul 2020.
    2. Chi Kin Lam & Yuhong Xu & Guosheng Yin, 2016. "Dynamic portfolio selection without risk-free assets," Papers 1602.04975, arXiv.org.
    3. Shuzhen Yang, 2019. "Multi-time state mean-variance model in continuous time," Papers 1912.01793, arXiv.org.
    4. Tomas Björk & Agatha Murgoci & Xun Yu Zhou, 2014. "Mean–Variance Portfolio Optimization With State-Dependent Risk Aversion," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 1-24, January.
    5. De Gennaro Aquino, Luca & Sornette, Didier & Strub, Moris S., 2023. "Portfolio selection with exploration of new investment assets," European Journal of Operational Research, Elsevier, vol. 310(2), pages 773-792.
    6. Shuzhen Yang, 2019. "A varying terminal time mean-variance model," Papers 1909.13102, arXiv.org, revised Jan 2020.
    7. Min Dai & Zuo Quan Xu & Xun Yu Zhou, 2009. "Continuous-Time Markowitz's Model with Transaction Costs," Papers 0906.0678, arXiv.org.
    8. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    9. Chun Hung Chiu & Xun Yu Zhou, 2011. "The premium of dynamic trading," Quantitative Finance, Taylor & Francis Journals, vol. 11(1), pages 115-123.
    10. Lucy Gongtao Chen & Daniel Zhuoyu Long & Melvyn Sim, 2015. "On Dynamic Decision Making to Meet Consumption Targets," Operations Research, INFORMS, vol. 63(5), pages 1117-1130, October.
    11. Ben-Zhang Yang & Xin-Jiang He & Song-Ping Zhu, 2020. "Continuous time mean-variance-utility portfolio problem and its equilibrium strategy," Papers 2005.06782, arXiv.org, revised Nov 2020.
    12. F. Cong & C. W. Oosterlee, 2017. "On Robust Multi-Period Pre-Commitment And Time-Consistent Mean-Variance Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-26, November.
    13. Zhu, Yichen & Escobar-Anel, Marcos, 2022. "Polynomial affine approach to HARA utility maximization with applications to OrnsteinUhlenbeck 4/2 models," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    14. Li, Yongwu & Qiao, Han & Wang, Shouyang & Zhang, Ling, 2015. "Time-consistent investment strategy under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 187-197.
    15. Amen Aissi Harzallah & Mouna Boujelbene Abbes, 2020. "The Impact of Financial Crises on the Asset Allocation: Classical Theory Versus Behavioral Theory," Journal of Interdisciplinary Economics, , vol. 32(2), pages 218-236, July.
    16. Min Dai & Hanqing Jin & Steven Kou & Yuhong Xu, 2021. "A Dynamic Mean-Variance Analysis for Log Returns," Management Science, INFORMS, vol. 67(2), pages 1093-1108, February.
    17. Ben-Zhang Yang & Xin-Jiang He & Song-Ping Zhu, 2020. "Mean-variance-utility portfolio selection with time and state dependent risk aversion," Papers 2007.06510, arXiv.org, revised Aug 2020.
    18. Bi, Junna & Jin, Hanqing & Meng, Qingbin, 2018. "Behavioral mean-variance portfolio selection," European Journal of Operational Research, Elsevier, vol. 271(2), pages 644-663.
    19. Dimitris Bertsimas & Melvyn Sim & Meilin Zhang, 2019. "Adaptive Distributionally Robust Optimization," Management Science, INFORMS, vol. 65(2), pages 604-618, February.
    20. Lin Chen & Xun Yu Zhou, 2022. "Naive Markowitz Policies," Papers 2212.07516, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2011.10966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.