IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v8y2020i1p15-d317375.html
   My bibliography  Save this article

Portfolio Optimization under Correlation Constraint

Author

Listed:
  • Aditya Maheshwari

    (Bank of America Securities, New York, NY 10036, USA)

  • Traian A. Pirvu

    (Department of Mathematics and Statistics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada)

Abstract

We consider the problem of portfolio optimization with a correlation constraint. The framework is the multi-period stochastic financial market setting with one tradable stock, stochastic income, and a non-tradable index. The correlation constraint is imposed on the portfolio and the non-tradable index at some benchmark time horizon. The goal is to maximize a portofolio’s expected exponential utility subject to the correlation constraint. Two types of optimal portfolio strategies are considered: the subgame perfect and the precommitment ones. We find analytical expressions for the constrained subgame perfect (CSGP) and the constrained precommitment (CPC) portfolio strategies. Both these portfolio strategies yield significantly lower risk when compared to the unconstrained setting, at the cost of a small utility loss. The performance of the CSGP and CPC portfolio strategies is similar.

Suggested Citation

  • Aditya Maheshwari & Traian A. Pirvu, 2020. "Portfolio Optimization under Correlation Constraint," Risks, MDPI, vol. 8(1), pages 1-18, February.
  • Handle: RePEc:gam:jrisks:v:8:y:2020:i:1:p:15-:d:317375
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/8/1/15/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/8/1/15/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Traian A. Pirvu & Huayue Zhang, 2013. "Utility Indifference Pricing: A Time Consistent Approach," Applied Mathematical Finance, Taylor & Francis Journals, vol. 20(4), pages 304-326, September.
    2. Huiling Wu, 2013. "Time-Consistent Strategies for a Multiperiod Mean-Variance Portfolio Selection Problem," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-13, April.
    3. Zinoviy Landsman & Udi Makov & Tomer Shushi, 2018. "A Generalized Measure for the Optimal Portfolio Selection Problem and its Explicit Solution," Risks, MDPI, vol. 6(1), pages 1-15, March.
    4. Bernard, C. & Vanduffel, S., 2014. "Mean–variance optimal portfolios in the presence of a benchmark with applications to fraud detection," European Journal of Operational Research, Elsevier, vol. 234(2), pages 469-480.
    5. C. Bernard & D. Cornilly & S. Vanduffel, 2018. "Optimal portfolios under a correlation constraint," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 333-345, March.
    6. Farzad Pourbabaee & Minsuk Kwak & Traian A. Pirvu, 2016. "Risk minimization and portfolio diversification," Quantitative Finance, Taylor & Francis Journals, vol. 16(9), pages 1325-1332, September.
    7. Imre Kondor & G'abor Papp & Fabio Caccioli, 2016. "Analytic solution to variance optimization with no short-selling," Papers 1612.07067, arXiv.org, revised Jan 2017.
    8. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aditya Maheshwari & Traian Pirvu, 2019. "Portfolio Optimization under Correlation Constraint," Papers 1912.12521, arXiv.org.
    2. Bernard, Carole & Vanduffel, Steven & Ye, Jiang, 2019. "Optimal strategies under Omega ratio," European Journal of Operational Research, Elsevier, vol. 275(2), pages 755-767.
    3. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    4. Boyarchenko, Svetlana & Levendorskii[caron], Sergei, 2007. "Optimal stopping made easy," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 201-217, February.
    5. Robert C. Merton, 2006. "Paul Samuelson and Financial Economics," The American Economist, Sage Publications, vol. 50(2), pages 9-31, October.
    6. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2003. "Are convertible bonds underpriced? An analysis of the French market," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 635-653, April.
    7. Helga Meier & Nicos Christofides & Gerry Salkin, 2001. "Capital Budgeting Under Uncertainty---An Integrated Approach Using Contingent Claims Analysis and Integer Programming," Operations Research, INFORMS, vol. 49(2), pages 196-206, April.
    8. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    9. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    10. Juan M. Londono & Mehrdad Samadi, 2023. "The Price of Macroeconomic Uncertainty: Evidence from Daily Options," International Finance Discussion Papers 1376, Board of Governors of the Federal Reserve System (U.S.).
    11. Bernard Dumas & Andrew Lyasoff, 2012. "Incomplete-Market Equilibria Solved Recursively on an Event Tree," Journal of Finance, American Finance Association, vol. 67(5), pages 1897-1941, October.
    12. Guedes, José & Santos, Pedro, 2016. "Valuing an offshore oil exploration and production project through real options analysis," Energy Economics, Elsevier, vol. 60(C), pages 377-386.
    13. Krzysztof S. Targiel & Maciej Nowak & Tadeusz Trzaskalik, 2018. "Scheduling non-critical activities using multicriteria approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 585-598, September.
    14. Biancardi, Marta & Di Bari, Antonio & Villani, Giovanni, 2021. "R&D investment decision on smart cities: Energy sustainability and opportunity," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    15. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    16. Hoque, Ariful & Le, Thi & Hasan, Morshadul & Abedin, Mohammad Zoynul, 2024. "Does market efficiency matter for Shanghai 50 ETF index options?," Research in International Business and Finance, Elsevier, vol. 67(PB).
    17. Song-Ping Zhu & Xin-Jiang He, 2018. "A hybrid computational approach for option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-16, September.
    18. Patric H. Hendershott, 1986. "Mortgage Pricing: What Have We Learned So Far?," NBER Working Papers 1959, National Bureau of Economic Research, Inc.
    19. Carré, Sylvain & Cohen, Daniel & Villemot, Sébastien, 2019. "The sources of sovereign risk: a calibration based on Lévy stochastic processes," Journal of International Economics, Elsevier, vol. 118(C), pages 31-43.
    20. Santos, Lúcia & Soares, Isabel & Mendes, Carla & Ferreira, Paula, 2014. "Real Options versus Traditional Methods to assess Renewable Energy Projects," Renewable Energy, Elsevier, vol. 68(C), pages 588-594.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:8:y:2020:i:1:p:15-:d:317375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.