IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v119y2013icp11-17.html
   My bibliography  Save this article

Evaluating the damage associated with intentional supply deprivation in multi-commodity network

Author

Listed:
  • Levitin, G.
  • Gertsbakh, I.
  • Shpungin, Y.

Abstract

This paper presents a method for evaluating an expected damage associated with nodes deprivation of supply of commodities in multi-commodity networks with a given topology as a result of intentional attack on randomly chosen network links. The method is based on a Monte Carlo simulation approach for evaluating the expected number of nodes deprived of all possible subsets of commodities. It also uses the contest success function that evaluates destruction probability of individual links as a function of per-link attack and defense efforts. It is assumed that the defender has no information about the attacker's actions and the attacker has no information about the network structure. The method allows the analysts to compare different solutions of expected damage reduction under conditions of uncertainty. Illustrative examples are presented.

Suggested Citation

  • Levitin, G. & Gertsbakh, I. & Shpungin, Y., 2013. "Evaluating the damage associated with intentional supply deprivation in multi-commodity network," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 11-17.
  • Handle: RePEc:eee:reensy:v:119:y:2013:i:c:p:11-17
    DOI: 10.1016/j.ress.2013.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832013001270
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2013.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Levitin, Gregory & Hausken, Kjell, 2009. "Meeting a demand vs. enhancing protections in homogeneous parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1711-1717.
    2. Vicki Bier & Santiago Oliveros & Larry Samuelson, 2007. "Choosing What to Protect: Strategic Defensive Allocation against an Unknown Attacker," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 9(4), pages 563-587, August.
    3. Levitin, G. & Gertsbakh, I. & Shpungin, Y., 2011. "Evaluating the damage associated with intentional network disintegration," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 433-439.
    4. Azaiez, M.N. & Bier, Vicki M., 2007. "Optimal resource allocation for security in reliability systems," European Journal of Operational Research, Elsevier, vol. 181(2), pages 773-786, September.
    5. Kjell Hausken, 2005. "Production and Conflict Models Versus Rent-Seeking Models," Public Choice, Springer, vol. 123(1), pages 59-93, April.
    6. Ramirez-Marquez, Jose E. & Rocco S, Claudio M. & Levitin, Gregory, 2009. "Optimal protection of general source–sink networks via evolutionary techniques," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1676-1684.
    7. Ramirez-Marquez, José Emmanuel & Rocco S., Claudio M., 2009. "Stochastic network interdiction optimization via capacitated network reliability modeling and probabilistic solution discovery," Reliability Engineering and System Safety, Elsevier, vol. 94(5), pages 913-921.
    8. Rocco S., Claudio M. & Emmanuel Ramirez-Marquez, José & Salazar A., Daniel E., 2010. "Bi and tri-objective optimization in the deterministic network interdiction problem," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 887-896.
    9. Richard Wollmer, 1964. "Removing Arcs from a Network," Operations Research, INFORMS, vol. 12(6), pages 934-940, December.
    10. Stergios Skaperdas, 1996. "Contest success functions (*)," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(2), pages 283-290.
    11. Garg, Manish & Smith, J. Cole, 2008. "Models and algorithms for the design of survivable multicommodity flow networks with general failure scenarios," Omega, Elsevier, vol. 36(6), pages 1057-1071, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bricha, Naji & Nourelfath, Mustapha, 2014. "Extra-capacity versus protection for supply networks under attack," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 185-196.
    2. Hongyan Dui & Yuheng Yang & Yun-an Zhang & Yawen Zhu, 2022. "Recovery Analysis and Maintenance Priority of Metro Networks Based on Importance Measure," Mathematics, MDPI, vol. 10(21), pages 1-20, October.
    3. Lin, Shuai & Jia, Limin & Zhang, Hengrun & Zhang, Pengzhu, 2022. "Reliability of high-speed electric multiple units in terms of the expanded multi-state flow network," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    4. Yeh, Wei-Chang, 2022. "Novel direct algorithm for computing simultaneous all-level reliability of multistate flow networks," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    5. Bricha, Naji & Nourelfath, Mustapha, 2015. "Protection of warehouses and plants under capacity constraint," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 93-104.
    6. Khodakaram Salimifard & Sara Bigharaz, 2022. "The multicommodity network flow problem: state of the art classification, applications, and solution methods," Operational Research, Springer, vol. 22(1), pages 1-47, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Levitin, G. & Gertsbakh, I. & Shpungin, Y., 2011. "Evaluating the damage associated with intentional network disintegration," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 433-439.
    2. Liberatore, Federico & Scaparra, Maria P. & Daskin, Mark S., 2012. "Hedging against disruptions with ripple effects in location analysis," Omega, Elsevier, vol. 40(1), pages 21-30, January.
    3. Levitin, Gregory & Hausken, Kjell, 2010. "Separation in homogeneous systems with independent identical elements," European Journal of Operational Research, Elsevier, vol. 203(3), pages 625-634, June.
    4. Levitin, Gregory & Hausken, Kjell, 2009. "False targets vs. redundancy in homogeneous parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 588-595.
    5. Levitin, Gregory & Hausken, Kjell, 2009. "Intelligence and impact contests in systems with redundancy, false targets, and partial protection," Reliability Engineering and System Safety, Elsevier, vol. 94(12), pages 1927-1941.
    6. Kjell Hausken & Jun Zhuang, 2011. "Governments' and Terrorists' Defense and Attack in a T -Period Game," Decision Analysis, INFORMS, vol. 8(1), pages 46-70, March.
    7. Levitin, Gregory & Hausken, Kjell, 2008. "Protection vs. redundancy in homogeneous parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1444-1451.
    8. Chi Zhang & Jose Ramirez-Marquez, 2013. "Protecting critical infrastructures against intentional attacks: a two-stage game with incomplete information," IISE Transactions, Taylor & Francis Journals, vol. 45(3), pages 244-258.
    9. Kjell Hausken & Vicki M. Bier & Jun Zhuang, 2009. "Defending Against Terrorism, Natural Disaster, and All Hazards," International Series in Operations Research & Management Science, in: Vicki M. M. Bier & M. Naceur Azaiez (ed.), Game Theoretic Risk Analysis of Security Threats, chapter 4, pages 65-97, Springer.
    10. Kjell Hausken & Gregory Levitin, 2008. "Efficiency of Even Separation of Parallel Elements with Variable Contest Intensity," Risk Analysis, John Wiley & Sons, vol. 28(5), pages 1477-1486, October.
    11. Ye, Zhi-Sheng & Peng, Rui & Wang, Wenbin, 2017. "Defense and attack of performance-sharing common bus systemsAuthor-Name: Zhai, Qingqing," European Journal of Operational Research, Elsevier, vol. 256(3), pages 962-975.
    12. Ramirez-Marquez, Jose E. & Rocco S, Claudio M. & Levitin, Gregory, 2009. "Optimal protection of general source–sink networks via evolutionary techniques," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1676-1684.
    13. Hausken, Kjell & Bier, Vicki M., 2011. "Defending against multiple different attackers," European Journal of Operational Research, Elsevier, vol. 211(2), pages 370-384, June.
    14. Levitin, Gregory & Hausken, Kjell, 2009. "False targets efficiency in defense strategy," European Journal of Operational Research, Elsevier, vol. 194(1), pages 155-162, April.
    15. G Levitin & K Hausken, 2010. "Defence and attack of systems with variable attacker system structure detection probability," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 124-133, January.
    16. R Peng & G Levitin & M Xie & S H Ng, 2011. "Optimal defence of single object with imperfect false targets," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 134-141, January.
    17. Levitin, Gregory & Hausken, Kjell, 2009. "Parallel systems under two sequential attacks," Reliability Engineering and System Safety, Elsevier, vol. 94(3), pages 763-772.
    18. Levitin, Gregory & Hausken, Kjell, 2009. "Meeting a demand vs. enhancing protections in homogeneous parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1711-1717.
    19. Bier, Vicki M. & Hausken, Kjell, 2013. "Defending and attacking a network of two arcs subject to traffic congestion," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 214-224.
    20. Peng, R. & Zhai, Q.Q. & Levitin, G., 2016. "Defending a single object against an attacker trying to detect a subset of false targets," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 137-147.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:119:y:2013:i:c:p:11-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.