IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v217y2012i1p44-53.html
   My bibliography  Save this article

A comparison of heuristic best-first algorithms for bicriterion shortest path problems

Author

Listed:
  • Machuca, E.
  • Mandow, L.
  • Pérez de la Cruz, J.L.
  • Ruiz-Sepulveda, A.

Abstract

A variety of algorithms have been proposed to solve the bicriterion shortest path problem. This article analyzes and compares the performance of three best-first (label-setting) algorithms that accept heuristic information to improve efficiency. These are NAMOA∗, MOA∗, and Tung & Chew’s algorithm (TC). A set of experiments explores the impact of heuristic information in search efficiency, and the relative performance of the algorithms. The analysis reveals that NAMOA∗ is the best option for difficult problems. Its time performance can benefit considerably from heuristic information, though not in all cases. The performance of TC is similar but somewhat worse. However, the time performance of MOA∗ is found to degrade considerably with the use of heuristic information in most cases. Explanations are provided for these phenomena.

Suggested Citation

  • Machuca, E. & Mandow, L. & Pérez de la Cruz, J.L. & Ruiz-Sepulveda, A., 2012. "A comparison of heuristic best-first algorithms for bicriterion shortest path problems," European Journal of Operational Research, Elsevier, vol. 217(1), pages 44-53.
  • Handle: RePEc:eee:ejores:v:217:y:2012:i:1:p:44-53
    DOI: 10.1016/j.ejor.2011.08.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711008010
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2011.08.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ziliaskopoulos, Athanasios K. & Mandanas, Fotios D. & Mahmassani, Hani S., 2009. "An extension of labeling techniques for finding shortest path trees," European Journal of Operational Research, Elsevier, vol. 198(1), pages 63-72, October.
    2. Matthias Müller-Hannemann & Karsten Weihe, 2006. "On the cardinality of the Pareto set in bicriteria shortest path problems," Annals of Operations Research, Springer, vol. 147(1), pages 269-286, October.
    3. Mote, John & Murthy, Ishwar & Olson, David L., 1991. "A parametric approach to solving bicriterion shortest path problems," European Journal of Operational Research, Elsevier, vol. 53(1), pages 81-92, July.
    4. Tung Tung, Chi & Lin Chew, Kim, 1992. "A multicriteria Pareto-optimal path algorithm," European Journal of Operational Research, Elsevier, vol. 62(2), pages 203-209, October.
    5. Iori, Manuel & Martello, Silvano & Pretolani, Daniele, 2010. "An aggregate label setting policy for the multi-objective shortest path problem," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1489-1496, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pulido, Francisco Javier & Mandow, Lawrence & Pérez de la Cruz, José Luis, 2014. "Multiobjective shortest path problems with lexicographic goal-based preferences," European Journal of Operational Research, Elsevier, vol. 239(1), pages 89-101.
    2. Enrique Machuca & Lawrence Mandow, 2016. "Lower bound sets for biobjective shortest path problems," Journal of Global Optimization, Springer, vol. 64(1), pages 63-77, January.
    3. Zajac, Sandra & Huber, Sandra, 2021. "Objectives and methods in multi-objective routing problems: a survey and classification scheme," European Journal of Operational Research, Elsevier, vol. 290(1), pages 1-25.
    4. Duque, Daniel & Lozano, Leonardo & Medaglia, Andrés L., 2015. "An exact method for the biobjective shortest path problem for large-scale road networks," European Journal of Operational Research, Elsevier, vol. 242(3), pages 788-797.
    5. Perederieieva, Olga & Raith, Andrea & Schmidt, Marie, 2018. "Non-additive shortest path in the context of traffic assignment," European Journal of Operational Research, Elsevier, vol. 268(1), pages 325-338.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duque, Daniel & Lozano, Leonardo & Medaglia, Andrés L., 2015. "An exact method for the biobjective shortest path problem for large-scale road networks," European Journal of Operational Research, Elsevier, vol. 242(3), pages 788-797.
    2. Enrique Machuca & Lawrence Mandow, 2016. "Lower bound sets for biobjective shortest path problems," Journal of Global Optimization, Springer, vol. 64(1), pages 63-77, January.
    3. Granat, Janusz & Guerriero, Francesca, 2003. "The interactive analysis of the multicriteria shortest path problem by the reference point method," European Journal of Operational Research, Elsevier, vol. 151(1), pages 103-118, November.
    4. Perny, Patrice & Spanjaard, Olivier, 2005. "A preference-based approach to spanning trees and shortest paths problems***," European Journal of Operational Research, Elsevier, vol. 162(3), pages 584-601, May.
    5. Xie, Chi & Travis Waller, S., 2012. "Parametric search and problem decomposition for approximating Pareto-optimal paths," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1043-1067.
    6. Perederieieva, Olga & Raith, Andrea & Schmidt, Marie, 2018. "Non-additive shortest path in the context of traffic assignment," European Journal of Operational Research, Elsevier, vol. 268(1), pages 325-338.
    7. F. Guerriero & R. Musmanno, 2001. "Label Correcting Methods to Solve Multicriteria Shortest Path Problems," Journal of Optimization Theory and Applications, Springer, vol. 111(3), pages 589-613, December.
    8. Pulido, Francisco Javier & Mandow, Lawrence & Pérez de la Cruz, José Luis, 2014. "Multiobjective shortest path problems with lexicographic goal-based preferences," European Journal of Operational Research, Elsevier, vol. 239(1), pages 89-101.
    9. Breugem, T. & Dollevoet, T.A.B. & van den Heuvel, W., 2016. "Analysis of FPTASes for the Multi-Objective Shortest Path Problem," Econometric Institute Research Papers EI2016-03, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    10. Luigi Di Puglia Pugliese & Francesca Guerriero, 2013. "A Reference Point Approach for the Resource Constrained Shortest Path Problems," Transportation Science, INFORMS, vol. 47(2), pages 247-265, May.
    11. Yannick Kergosien & Antoine Giret & Emmanuel Néron & Gaël Sauvanet, 2022. "An Efficient Label-Correcting Algorithm for the Multiobjective Shortest Path Problem," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 76-92, January.
    12. B. Boffey & Francisco García & Gilbert Laporte & Juan Mesa & Blas Pelegrín, 1995. "Multiobjective routing problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 3(2), pages 167-220, December.
    13. Zhang, Yuli & Shen, Zuo-Jun Max & Song, Shiji, 2016. "Parametric search for the bi-attribute concave shortest path problem," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 150-168.
    14. Dunker, Thomas & Radons, Gunter & Westkamper, Engelbert, 2005. "Combining evolutionary computation and dynamic programming for solving a dynamic facility layout problem," European Journal of Operational Research, Elsevier, vol. 165(1), pages 55-69, August.
    15. Ehrgott, Matthias & Wang, Judith Y.T. & Raith, Andrea & van Houtte, Chris, 2012. "A bi-objective cyclist route choice model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 652-663.
    16. Hagspihl, Thomas & Kolisch, Rainer & Fontaine, Pirmin & Schiffels, Sebastian, 2024. "Apron layout planning–Optimal positioning of aircraft stands," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    17. Kuhn, K. & Raith, A. & Schmidt, M. & Schöbel, A., 2016. "Bi-objective robust optimisation," European Journal of Operational Research, Elsevier, vol. 252(2), pages 418-431.
    18. Suvrajeet Sen & Rekha Pillai & Shirish Joshi & Ajay K. Rathi, 2001. "A Mean-Variance Model for Route Guidance in Advanced Traveler Information Systems," Transportation Science, INFORMS, vol. 35(1), pages 37-49, February.
    19. Andrea Raith & Judith Wang & Matthias Ehrgott & Stuart Mitchell, 2014. "Solving multi-objective traffic assignment," Annals of Operations Research, Springer, vol. 222(1), pages 483-516, November.
    20. Andrew Ensor & Felipe Lillo, 2016. "Colored-Edge Graph Approach for the Modeling of Multimodal Transportation Systems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(01), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:217:y:2012:i:1:p:44-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.