IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v47y2013i2p247-265.html
   My bibliography  Save this article

A Reference Point Approach for the Resource Constrained Shortest Path Problems

Author

Listed:
  • Luigi Di Puglia Pugliese

    (Department of Electronics, Computer Science and Systems, University of Calabria, Rende (CS), Italy)

  • Francesca Guerriero

    (Department of Electronics, Computer Science and Systems, University of Calabria, Rende (CS), Italy)

Abstract

The Resource Constrained Shortest Path Problem ((R-script) (C-script) (S-script) (P-script) (P-script)) is a variant of the classical shortest path problem and is of great practical importance. The aim is to find the shortest path between a given pair of nodes under additional constraints representing upper bounds on the consumption of resources along the path. In the scientific literature, different approaches have been defined to solve the (R-script) (C-script) (S-script) (P-script) (P-script). In this work we propose an innovative interactive method to address the (R-script) (C-script) (S-script) (P-script) (P-script), based on a novel search strategy of the criteria space. The performance of the proposed approach is evaluated on the basis of an extensive computational study by considering benchmark instances. A comparison with the state-of-the-art approaches developed for the (R-script) (C-script) (S-script) (P-script) (P-script) is also carried out. The computational results have shown that the developed solution strategy is competitive with the most efficient strategies known thus far.

Suggested Citation

  • Luigi Di Puglia Pugliese & Francesca Guerriero, 2013. "A Reference Point Approach for the Resource Constrained Shortest Path Problems," Transportation Science, INFORMS, vol. 47(2), pages 247-265, May.
  • Handle: RePEc:inm:ortrsc:v:47:y:2013:i:2:p:247-265
    DOI: 10.1287/trsc.1120.0418
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1120.0418
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1120.0418?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. D. Espinoza & R. Garcia & M. Goycoolea & G. L. Nemhauser & M. W. P. Savelsbergh, 2008. "Per-Seat, On-Demand Air Transportation Part I: Problem Description and an Integer Multicommodity Flow Model," Transportation Science, INFORMS, vol. 42(3), pages 263-278, August.
    2. Carraway, Robert L. & Morin, Thomas L. & Moskowitz, Herbert, 1990. "Generalized dynamic programming for multicriteria optimization," European Journal of Operational Research, Elsevier, vol. 44(1), pages 95-104, January.
    3. Desrochers, Martin & Soumis, Francois, 1988. "A reoptimization algorithm for the shortest path problem with time windows," European Journal of Operational Research, Elsevier, vol. 35(2), pages 242-254, May.
    4. Mote, John & Murthy, Ishwar & Olson, David L., 1991. "A parametric approach to solving bicriterion shortest path problems," European Journal of Operational Research, Elsevier, vol. 53(1), pages 81-92, July.
    5. Buchanan, John & Gardiner, Lorraine, 2003. "A comparison of two reference point methods in multiple objective mathematical programming," European Journal of Operational Research, Elsevier, vol. 149(1), pages 17-34, August.
    6. Tung Tung, Chi & Lin Chew, Kim, 1992. "A multicriteria Pareto-optimal path algorithm," European Journal of Operational Research, Elsevier, vol. 62(2), pages 203-209, October.
    7. Murthy, Ishwar & Olson, David L., 1994. "An interactive procedure using domination cones for bicriterion shortest path problems," European Journal of Operational Research, Elsevier, vol. 72(2), pages 417-431, January.
    8. Santos, Luis & Coutinho-Rodrigues, João & Current, John R., 2007. "An improved solution algorithm for the constrained shortest path problem," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 756-771, August.
    9. Namorado Climaco, Joao Carlos & Queiros Vieira Martins, Ernesto, 1982. "A bicriterion shortest path algorithm," European Journal of Operational Research, Elsevier, vol. 11(4), pages 399-404, December.
    10. Cynthia Barnhart & Natashia L. Boland & Lloyd W. Clarke & Ellis L. Johnson & George L. Nemhauser & Rajesh G. Shenoi, 1998. "Flight String Models for Aircraft Fleeting and Routing," Transportation Science, INFORMS, vol. 32(3), pages 208-220, August.
    11. Luque, Mariano & Miettinen, Kaisa & Eskelinen, Petri & Ruiz, Francisco, 2009. "Incorporating preference information in interactive reference point methods for multiobjective optimization," Omega, Elsevier, vol. 37(2), pages 450-462, April.
    12. Jin Y. Yen, 1971. "Finding the K Shortest Loopless Paths in a Network," Management Science, INFORMS, vol. 17(11), pages 712-716, July.
    13. Arthur Warburton, 1987. "Approximation of Pareto Optima in Multiple-Objective, Shortest-Path Problems," Operations Research, INFORMS, vol. 35(1), pages 70-79, February.
    14. Granat, Janusz & Guerriero, Francesca, 2003. "The interactive analysis of the multicriteria shortest path problem by the reference point method," European Journal of Operational Research, Elsevier, vol. 151(1), pages 103-118, November.
    15. Modesti, Paola & Sciomachen, Anna, 1998. "A utility measure for finding multiobjective shortest paths in urban multimodal transportation networks," European Journal of Operational Research, Elsevier, vol. 111(3), pages 495-508, December.
    16. W Ogryczak, 2001. "On goal programming formulations of the reference point method," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(6), pages 691-698, June.
    17. Refael Hassin, 1992. "Approximation Schemes for the Restricted Shortest Path Problem," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 36-42, February.
    18. Elimam, A. A. & Kohler, David, 1997. "Two engineering applications of a constrained shortest-path model," European Journal of Operational Research, Elsevier, vol. 103(3), pages 426-438, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Bi Yu & Chen, Xiao-Wei & Chen, Hui-Ping & Lam, William H.K., 2020. "Efficient algorithm for finding k shortest paths based on re-optimization technique," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    2. Sedeño-Noda, Antonio & Alonso-Rodríguez, Sergio, 2015. "An enhanced K-SP algorithm with pruning strategies to solve the constrained shortest path problem," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 602-618.
    3. L. Di Puglia Pugliese & D. Ferone & P. Festa & F. Guerriero, 2022. "A generalized shortest path tour problem with time windows," Computational Optimization and Applications, Springer, vol. 83(2), pages 593-614, November.
    4. Matthias Ruß & Gunther Gust & Dirk Neumann, 2021. "The Constrained Reliable Shortest Path Problem in Stochastic Time-Dependent Networks," Operations Research, INFORMS, vol. 69(3), pages 709-726, May.
    5. Tilk, Christian & Rothenbächer, Ann-Kathrin & Gschwind, Timo & Irnich, Stefan, 2017. "Asymmetry matters: Dynamic half-way points in bidirectional labeling for solving shortest path problems with resource constraints faster," European Journal of Operational Research, Elsevier, vol. 261(2), pages 530-539.
    6. Trivella, Alessio & Corman, Francesco & Koza, David F. & Pisinger, David, 2021. "The multi-commodity network flow problem with soft transit time constraints: Application to liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    7. Melchiori, Anna & Sgalambro, Antonino, 2020. "A branch and price algorithm to solve the Quickest Multicommodity k-splittable Flow Problem," European Journal of Operational Research, Elsevier, vol. 282(3), pages 846-857.
    8. Antonio Frangioni & Laura Galli & Maria Grazia Scutellà, 2015. "Delay-Constrained Shortest Paths: Approximation Algorithms and Second-Order Cone Models," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 1051-1077, March.
    9. Leonardo Lozano & Daniel Duque & Andrés L. Medaglia, 2016. "An Exact Algorithm for the Elementary Shortest Path Problem with Resource Constraints," Transportation Science, INFORMS, vol. 50(1), pages 348-357, February.
    10. Luigi Di Puglia Pugliese & Francesca Guerriero, 2016. "On the shortest path problem with negative cost cycles," Computational Optimization and Applications, Springer, vol. 63(2), pages 559-583, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Chi & Travis Waller, S., 2012. "Parametric search and problem decomposition for approximating Pareto-optimal paths," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1043-1067.
    2. Opasanon, Sathaporn & Miller-Hooks, Elise, 2006. "Multicriteria adaptive paths in stochastic, time-varying networks," European Journal of Operational Research, Elsevier, vol. 173(1), pages 72-91, August.
    3. F. Guerriero & R. Musmanno, 2001. "Label Correcting Methods to Solve Multicriteria Shortest Path Problems," Journal of Optimization Theory and Applications, Springer, vol. 111(3), pages 589-613, December.
    4. Soroush, H.M., 2008. "Optimal paths in bi-attribute networks with fractional cost functions," European Journal of Operational Research, Elsevier, vol. 190(3), pages 633-658, November.
    5. Granat, Janusz & Guerriero, Francesca, 2003. "The interactive analysis of the multicriteria shortest path problem by the reference point method," European Journal of Operational Research, Elsevier, vol. 151(1), pages 103-118, November.
    6. Faramroze G. Engineer & George L. Nemhauser & Martin W. P. Savelsbergh, 2011. "Dynamic Programming-Based Column Generation on Time-Expanded Networks: Application to the Dial-a-Flight Problem," INFORMS Journal on Computing, INFORMS, vol. 23(1), pages 105-119, February.
    7. Luigi Di Puglia Pugliese & Francesca Guerriero, 2012. "A computational study of solution approaches for the resource constrained elementary shortest path problem," Annals of Operations Research, Springer, vol. 201(1), pages 131-157, December.
    8. Sedeño-Noda, Antonio & Alonso-Rodríguez, Sergio, 2015. "An enhanced K-SP algorithm with pruning strategies to solve the constrained shortest path problem," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 602-618.
    9. Mark M. Nejad & Lena Mashayekhy & Daniel Grosu & Ratna Babu Chinnam, 2017. "Optimal Routing for Plug-In Hybrid Electric Vehicles," Transportation Science, INFORMS, vol. 51(4), pages 1304-1325, November.
    10. Belanger, Nicolas & Desaulniers, Guy & Soumis, Francois & Desrosiers, Jacques, 2006. "Periodic airline fleet assignment with time windows, spacing constraints, and time dependent revenues," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1754-1766, December.
    11. Li, Jianping & Ge, Yu & He, Shuai & Lichen, Junran, 2014. "Approximation algorithms for constructing some required structures in digraphs," European Journal of Operational Research, Elsevier, vol. 232(2), pages 307-314.
    12. Michael Zabarankin & Stan Uryasev & Robert Murphey, 2006. "Aircraft routing under the risk of detection," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(8), pages 728-747, December.
    13. Li Guan & Jianping Li & Weidong Li & Junran Lichen, 2019. "Improved approximation algorithms for the combination problem of parallel machine scheduling and path," Journal of Combinatorial Optimization, Springer, vol. 38(3), pages 689-697, October.
    14. Duque, Daniel & Lozano, Leonardo & Medaglia, Andrés L., 2015. "An exact method for the biobjective shortest path problem for large-scale road networks," European Journal of Operational Research, Elsevier, vol. 242(3), pages 788-797.
    15. Murthy, Ishwar & Sarkar, Sumit, 1997. "Exact algorithms for the stochastic shortest path problem with a decreasing deadline utility function," European Journal of Operational Research, Elsevier, vol. 103(1), pages 209-229, November.
    16. Suvrajeet Sen & Rekha Pillai & Shirish Joshi & Ajay K. Rathi, 2001. "A Mean-Variance Model for Route Guidance in Advanced Traveler Information Systems," Transportation Science, INFORMS, vol. 35(1), pages 37-49, February.
    17. Randeep Bhatia & Sudipto Guha & Samir Khuller & Yoram J. Sussmann, 1998. "Facility Location with Dynamic Distance Functions," Journal of Combinatorial Optimization, Springer, vol. 2(3), pages 199-217, September.
    18. Michelle Dunbar & Gary Froyland & Cheng-Lung Wu, 2012. "Robust Airline Schedule Planning: Minimizing Propagated Delay in an Integrated Routing and Crewing Framework," Transportation Science, INFORMS, vol. 46(2), pages 204-216, May.
    19. Sarac, Abdulkadir & Batta, Rajan & Rump, Christopher M., 2006. "A branch-and-price approach for operational aircraft maintenance routing," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1850-1869, December.
    20. Range, Troels Martin, 2013. "Exploiting Set-Based Structures to Accelerate Dynamic Programming Algorithms for the Elementary Shortest Path Problem with Resource Constraints," Discussion Papers on Economics 17/2013, University of Southern Denmark, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:47:y:2013:i:2:p:247-265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.