Lower bound sets for biobjective shortest path problems
Author
Abstract
Suggested Citation
DOI: 10.1007/s10898-015-0324-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Francis Sourd & Olivier Spanjaard, 2008. "A Multiobjective Branch-and-Bound Framework: Application to the Biobjective Spanning Tree Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 472-484, August.
- Y. P. Aneja & K. P. K. Nair, 1979. "Bicriteria Transportation Problem," Management Science, INFORMS, vol. 25(1), pages 73-78, January.
- Tung Tung, Chi & Lin Chew, Kim, 1992. "A multicriteria Pareto-optimal path algorithm," European Journal of Operational Research, Elsevier, vol. 62(2), pages 203-209, October.
- Iori, Manuel & Martello, Silvano & Pretolani, Daniele, 2010. "An aggregate label setting policy for the multi-objective shortest path problem," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1489-1496, December.
- Matthias Müller-Hannemann & Karsten Weihe, 2006. "On the cardinality of the Pareto set in bicriteria shortest path problems," Annals of Operations Research, Springer, vol. 147(1), pages 269-286, October.
- Oleg Burdakov & Patrick Doherty & Kaj Holmberg & Per-Magnus Olsson, 2010. "Optimal placement of UV-based communications relay nodes," Journal of Global Optimization, Springer, vol. 48(4), pages 511-531, December.
- Machuca, E. & Mandow, L. & Pérez de la Cruz, J.L. & Ruiz-Sepulveda, A., 2012. "A comparison of heuristic best-first algorithms for bicriterion shortest path problems," European Journal of Operational Research, Elsevier, vol. 217(1), pages 44-53.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yannick Kergosien & Antoine Giret & Emmanuel Néron & Gaël Sauvanet, 2022. "An Efficient Label-Correcting Algorithm for the Multiobjective Shortest Path Problem," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 76-92, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Duque, Daniel & Lozano, Leonardo & Medaglia, Andrés L., 2015. "An exact method for the biobjective shortest path problem for large-scale road networks," European Journal of Operational Research, Elsevier, vol. 242(3), pages 788-797.
- Perederieieva, Olga & Raith, Andrea & Schmidt, Marie, 2018. "Non-additive shortest path in the context of traffic assignment," European Journal of Operational Research, Elsevier, vol. 268(1), pages 325-338.
- Machuca, E. & Mandow, L. & Pérez de la Cruz, J.L. & Ruiz-Sepulveda, A., 2012. "A comparison of heuristic best-first algorithms for bicriterion shortest path problems," European Journal of Operational Research, Elsevier, vol. 217(1), pages 44-53.
- Pulido, Francisco Javier & Mandow, Lawrence & Pérez de la Cruz, José Luis, 2014. "Multiobjective shortest path problems with lexicographic goal-based preferences," European Journal of Operational Research, Elsevier, vol. 239(1), pages 89-101.
- Pascal Halffmann & Tobias Dietz & Anthony Przybylski & Stefan Ruzika, 2020. "An inner approximation method to compute the weight set decomposition of a triobjective mixed-integer problem," Journal of Global Optimization, Springer, vol. 77(4), pages 715-742, August.
- Natashia Boland & Hadi Charkhgard & Martin Savelsbergh, 2015. "A Criterion Space Search Algorithm for Biobjective Integer Programming: The Balanced Box Method," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 735-754, November.
- Audrey Cerqueus & Xavier Gandibleux & Anthony Przybylski & Frédéric Saubion, 2017. "On branching heuristics for the bi-objective 0/1 unidimensional knapsack problem," Journal of Heuristics, Springer, vol. 23(5), pages 285-319, October.
- Przybylski, Anthony & Gandibleux, Xavier, 2017. "Multi-objective branch and bound," European Journal of Operational Research, Elsevier, vol. 260(3), pages 856-872.
- Julius Bauß & Michael Stiglmayr, 2024. "Augmenting bi-objective branch and bound by scalarization-based information," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 85-121, August.
- Cacchiani, Valentina & D’Ambrosio, Claudia, 2017. "A branch-and-bound based heuristic algorithm for convex multi-objective MINLPs," European Journal of Operational Research, Elsevier, vol. 260(3), pages 920-933.
- Thomas Stidsen & Kim Allan Andersen & Bernd Dammann, 2014. "A Branch and Bound Algorithm for a Class of Biobjective Mixed Integer Programs," Management Science, INFORMS, vol. 60(4), pages 1009-1032, April.
- Dächert, Kerstin & Klamroth, Kathrin & Lacour, Renaud & Vanderpooten, Daniel, 2017. "Efficient computation of the search region in multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 260(3), pages 841-855.
- Yannick Kergosien & Antoine Giret & Emmanuel Néron & Gaël Sauvanet, 2022. "An Efficient Label-Correcting Algorithm for the Multiobjective Shortest Path Problem," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 76-92, January.
- Markus Leitner & Ivana Ljubić & Markus Sinnl, 2015. "A Computational Study of Exact Approaches for the Bi-Objective Prize-Collecting Steiner Tree Problem," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 118-134, February.
- Soylu, Banu, 2018. "The search-and-remove algorithm for biobjective mixed-integer linear programming problems," European Journal of Operational Research, Elsevier, vol. 268(1), pages 281-299.
- Sophie N. Parragh & Fabien Tricoire, 2019. "Branch-and-Bound for Bi-objective Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 805-822, October.
- Sune Lauth Gadegaard & Lars Relund Nielsen & Matthias Ehrgott, 2019. "Bi-objective Branch-and-Cut Algorithms Based on LP Relaxation and Bound Sets," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 790-804, October.
- S. Dutta & S. Acharya & Rajashree Mishra, 2016. "Genetic algorithm based fuzzy stochastic transportation programming problem with continuous random variables," OPSEARCH, Springer;Operational Research Society of India, vol. 53(4), pages 835-872, December.
- Yang, X. Q. & Goh, C. J., 1997. "A method for convex curve approximation," European Journal of Operational Research, Elsevier, vol. 97(1), pages 205-212, February.
- Singh, Preetvanti & Saxena, P. K., 2003. "The multiple objective time transportation problem with additional restrictions," European Journal of Operational Research, Elsevier, vol. 146(3), pages 460-476, May.
More about this item
Keywords
Biobjective shortest path problem; Bound sets; Multiobjective A*; Road maps;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:64:y:2016:i:1:p:63-77. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.