IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v305y2021i1d10.1007_s10479-021-04141-w.html
   My bibliography  Save this article

A novel stochastic programming approach for scheduling of batch processes with decision dependent time of uncertainty realization

Author

Listed:
  • Kavitha G. Menon

    (University of Waterloo)

  • Ricardo Fukasawa

    (University of Waterloo)

  • Luis A. Ricardez-Sandoval

    (University of Waterloo)

Abstract

Uncertainty modelling is key to obtain a realistically feasible solution for large-scale optimization problems. In this study, we consider two-stage stochastic programming to model discrete-time batch process operations with a type II endogenous (decision dependent) uncertainty, where time of uncertainty realizations are dependent on the model decisions. We propose an integer programming model to solve the problem, whose key feature is that it does not require auxiliary binary variables or explicit non-anticipativity constraints to ensure non-anticipativity. To the best of our knowledge this is the first model dealing with such type II uncertainties that has these characteristics, which makes it a much more computationally attractive model. We present a proof that non-anticipativity is enforced implicitly as well as computational results using a large-scale scientific services industrial plant. The computational results from the case study depicts significant benefits in using the proposed stochastic programming approach.

Suggested Citation

  • Kavitha G. Menon & Ricardo Fukasawa & Luis A. Ricardez-Sandoval, 2021. "A novel stochastic programming approach for scheduling of batch processes with decision dependent time of uncertainty realization," Annals of Operations Research, Springer, vol. 305(1), pages 163-190, October.
  • Handle: RePEc:spr:annopr:v:305:y:2021:i:1:d:10.1007_s10479-021-04141-w
    DOI: 10.1007/s10479-021-04141-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04141-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04141-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miloš Kopa & Tomáš Rusý, 2021. "A decision-dependent randomness stochastic program for asset–liability management model with a pricing decision," Annals of Operations Research, Springer, vol. 299(1), pages 241-271, April.
    2. Suvrajeet Sen & Julia L. Higle, 1999. "An Introductory Tutorial on Stochastic Linear Programming Models," Interfaces, INFORMS, vol. 29(2), pages 33-61, April.
    3. Colvin, Matthew & Maravelias, Christos T., 2010. "Modeling methods and a branch and cut algorithm for pharmaceutical clinical trial planning using stochastic programming," European Journal of Operational Research, Elsevier, vol. 203(1), pages 205-215, May.
    4. Tore Jonsbråten & Roger Wets & David Woodruff, 1998. "A class of stochastic programs withdecision dependent random elements," Annals of Operations Research, Springer, vol. 82(0), pages 83-106, August.
    5. Colvin, Matthew & Maravelias, Christos T., 2011. "R&D pipeline management: Task interdependencies and risk management," European Journal of Operational Research, Elsevier, vol. 215(3), pages 616-628, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meersman, Tine & Maenhout, Broos & Van Herck, Koen, 2023. "A nested Benders decomposition-based algorithm to solve the three-stage stochastic optimisation problem modeling population-based breast cancer screening," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1273-1293.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maier, Sebastian & Pflug, Georg C. & Polak, John W., 2020. "Valuing portfolios of interdependent real options under exogenous and endogenous uncertainties," European Journal of Operational Research, Elsevier, vol. 285(1), pages 133-147.
    2. Feng, Wei & Feng, Yiping & Zhang, Qi, 2021. "Multistage robust mixed-integer optimization under endogenous uncertainty," European Journal of Operational Research, Elsevier, vol. 294(2), pages 460-475.
    3. Tahir Ekin & Nicholas G. Polson & Refik Soyer, 2017. "Augmented nested sampling for stochastic programs with recourse and endogenous uncertainty," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(8), pages 613-627, December.
    4. Lars Hellemo & Paul I. Barton & Asgeir Tomasgard, 2018. "Decision-dependent probabilities in stochastic programs with recourse," Computational Management Science, Springer, vol. 15(3), pages 369-395, October.
    5. Giovanni Pantuso, 2021. "A node formulation for multistage stochastic programs with endogenous uncertainty," Computational Management Science, Springer, vol. 18(3), pages 325-354, July.
    6. F. Hooshmand & S. A. MirHassani, 2018. "Reduction of nonanticipativity constraints in multistage stochastic programming problems with endogenous and exogenous uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 1-18, February.
    7. Solak, Senay & Clarke, John-Paul B. & Johnson, Ellis L. & Barnes, Earl R., 2010. "Optimization of R&D project portfolios under endogenous uncertainty," European Journal of Operational Research, Elsevier, vol. 207(1), pages 420-433, November.
    8. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    9. Gregory A. Godfrey & Warren B. Powell, 2001. "An Adaptive, Distribution-Free Algorithm for the Newsvendor Problem with Censored Demands, with Applications to Inventory and Distribution," Management Science, INFORMS, vol. 47(8), pages 1101-1112, August.
    10. Doan, Xuan Vinh, 2022. "Distributionally robust optimization under endogenous uncertainty with an application in retrofitting planning," European Journal of Operational Research, Elsevier, vol. 300(1), pages 73-84.
    11. Stephan Nagl & Michaela Fürsch & Dietmar Lindenberger, 2013. "The Costs of Electricity Systems with a High Share of Fluctuating Renewables: A Stochastic Investment and Dispatch Optimization Model for Europe," The Energy Journal, , vol. 34(4), pages 151-180, October.
    12. Abdoli, B. & Hooshmand, F. & MirHassani, S.A., 2023. "A novel stochastic programming model under endogenous uncertainty for the CCS-EOR planning problem," Applied Energy, Elsevier, vol. 338(C).
    13. Rao, Harish Venkatesh & Dutta, Goutam & Basu, Sankarshan, 2014. "Database Structure for a Multi Stage Stochastic Optimization Based Decision Support System for Asset – Liability Management of a Life Insurance Company," IIMA Working Papers WP2014-06-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    14. Tito Homem-de-Mello & Qingxia Kong & Rodrigo Godoy-Barba, 2022. "A Simulation Optimization Approach for the Appointment Scheduling Problem with Decision-Dependent Uncertainties," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2845-2865, September.
    15. Nesbitt, Peter & Blake, Lewis R. & Lamas, Patricio & Goycoolea, Marcos & Pagnoncelli, Bernardo K. & Newman, Alexandra & Brickey, Andrea, 2021. "Underground mine scheduling under uncertainty," European Journal of Operational Research, Elsevier, vol. 294(1), pages 340-352.
    16. Bora Tarhan & Ignacio Grossmann & Vikas Goel, 2013. "Computational strategies for non-convex multistage MINLP models with decision-dependent uncertainty and gradual uncertainty resolution," Annals of Operations Research, Springer, vol. 203(1), pages 141-166, March.
    17. Satish Ukkusuri & S. Waller, 2008. "Linear Programming Models for the User and System Optimal Dynamic Network Design Problem: Formulations, Comparisons and Extensions," Networks and Spatial Economics, Springer, vol. 8(4), pages 383-406, December.
    18. Marco Silva & João Pedro Pedroso, 2022. "Deep Reinforcement Learning for Crowdshipping Last-Mile Delivery with Endogenous Uncertainty," Mathematics, MDPI, vol. 10(20), pages 1-23, October.
    19. Khan, Asif & Asad, Mohammad Waqar Ali, 2019. "A method for optimal cut-off grade policy in open pit mining operations under uncertain supply," Resources Policy, Elsevier, vol. 60(C), pages 178-184.
    20. Sha, Yue & Zhang, Junlong & Cao, Hui, 2021. "Multistage stochastic programming approach for joint optimization of job scheduling and material ordering under endogenous uncertainties," European Journal of Operational Research, Elsevier, vol. 290(3), pages 886-900.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:305:y:2021:i:1:d:10.1007_s10479-021-04141-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.