IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v79y2021i4d10.1007_s10898-020-00960-6.html
   My bibliography  Save this article

Gaddum’s test for symmetric cones

Author

Listed:
  • Michael Orlitzky

    (Towson University)

Abstract

A real symmetric matrix A is copositive if $$\left\langle {Ax},{x}\right\rangle \ge 0$$ Ax , x ≥ 0 for all x in the nonnegative orthant. Copositive programming gained fame when Burer showed that hard nonconvex problems can be formulated as completely-positive programs. Alas, the power of copositive programming is offset by its difficulty: simple questions like “is this matrix copositive?” have complicated answers. In 1958, Jerry Gaddum proposed a recursive procedure to check if a given matrix is copositive by solving a series of matrix games. It is easy to implement and conceptually simple. Copositivity generalizes to cones other than the nonnegative orthant. If K is a proper cone, then the linear operator L is copositive on K if $$\left\langle {L \left( {x}\right) },{x}\right\rangle \ge 0$$ L x , x ≥ 0 for all x in K. Little is known about these operators in general. We extend Gaddum’s test to self-dual and symmetric cones, thereby deducing criteria for copositivity in those settings.

Suggested Citation

  • Michael Orlitzky, 2021. "Gaddum’s test for symmetric cones," Journal of Global Optimization, Springer, vol. 79(4), pages 927-940, April.
  • Handle: RePEc:spr:jglopt:v:79:y:2021:i:4:d:10.1007_s10898-020-00960-6
    DOI: 10.1007/s10898-020-00960-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-020-00960-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-020-00960-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Seetharama Gowda & Roman Sznajder, 2006. "Automorphism Invariance of P - and GUS -Properties of Linear Transformations on Euclidean Jordan Algebras," Mathematics of Operations Research, INFORMS, vol. 31(1), pages 109-123, February.
    2. Yu. E. Nesterov & M. J. Todd, 1997. "Self-Scaled Barriers and Interior-Point Methods for Convex Programming," Mathematics of Operations Research, INFORMS, vol. 22(1), pages 1-42, February.
    3. de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2008. "On Semidefinite Programming Relaxations of the Traveling Salesman Problem (revision of DP 2007-101)," Discussion Paper 2008-96, Tilburg University, Center for Economic Research.
    4. Alfredo Iusem & Felipe Lara, 2019. "Existence Results for Noncoercive Mixed Variational Inequalities in Finite Dimensional Spaces," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 122-138, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sungwoo Park & Dianne P. O’Leary, 2015. "A Polynomial Time Constraint-Reduced Algorithm for Semidefinite Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 558-571, August.
    2. Chee-Khian Sim, 2019. "Interior point method on semi-definite linear complementarity problems using the Nesterov–Todd (NT) search direction: polynomial complexity and local convergence," Computational Optimization and Applications, Springer, vol. 74(2), pages 583-621, November.
    3. Sturm, J.F., 2001. "Avoiding Numerical Cancellation in the Interior Point Method for Solving Semidefinite Programs," Other publications TiSEM 949fb20a-a2c6-4d87-85ea-8, Tilburg University, School of Economics and Management.
    4. Robert Chares & François Glineur, 2008. "An interior-point method for the single-facility location problem with mixed norms using a conic formulation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(3), pages 383-405, December.
    5. Lingchen Kong & Levent Tunçel & Naihua Xiu, 2012. "Existence and Uniqueness of Solutions for Homogeneous Cone Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 153(2), pages 357-376, May.
    6. B.V. Halldórsson & R.H. Tütüncü, 2003. "An Interior-Point Method for a Class of Saddle-Point Problems," Journal of Optimization Theory and Applications, Springer, vol. 116(3), pages 559-590, March.
    7. G. Q. Wang & Y. Q. Bai, 2012. "A New Full Nesterov–Todd Step Primal–Dual Path-Following Interior-Point Algorithm for Symmetric Optimization," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 966-985, September.
    8. G. Q. Wang & L. C. Kong & J. Y. Tao & G. Lesaja, 2015. "Improved Complexity Analysis of Full Nesterov–Todd Step Feasible Interior-Point Method for Symmetric Optimization," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 588-604, August.
    9. E. A. Yıldırım, 2003. "An Interior-Point Perspective on Sensitivity Analysis in Semidefinite Programming," Mathematics of Operations Research, INFORMS, vol. 28(4), pages 649-676, November.
    10. Vasile L. Basescu & John E. Mitchell, 2008. "An Analytic Center Cutting Plane Approach for Conic Programming," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 529-551, August.
    11. G. Q. Wang & Y. Q. Bai & X. Y. Gao & D. Z. Wang, 2015. "Improved Complexity Analysis of Full Nesterov–Todd Step Interior-Point Methods for Semidefinite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 242-262, April.
    12. Chinedu Izuchukwu & Yekini Shehu & Chibueze C. Okeke, 2023. "Extension of forward-reflected-backward method to non-convex mixed variational inequalities," Journal of Global Optimization, Springer, vol. 86(1), pages 123-140, May.
    13. J.F. Sturm & S. Zhang, 1998. "On Sensitivity of Central Solutions in Semidefinite Programming," Tinbergen Institute Discussion Papers 98-040/4, Tinbergen Institute.
    14. Mehdi Karimi & Levent Tunçel, 2020. "Primal–Dual Interior-Point Methods for Domain-Driven Formulations," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 591-621, May.
    15. Changhe Liu & Hongwei Liu, 2012. "A new second-order corrector interior-point algorithm for semidefinite programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 75(2), pages 165-183, April.
    16. Behrouz Kheirfam, 2015. "A Corrector–Predictor Path-Following Method for Convex Quadratic Symmetric Cone Optimization," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 246-260, January.
    17. J. Tao, 2010. "Strict Semimonotonicity Property of Linear Transformations on Euclidean Jordan Algebras," Journal of Optimization Theory and Applications, Springer, vol. 144(3), pages 575-596, March.
    18. Renato D. C. Monteiro & Paulo R. Zanjácomo, 2000. "General Interior-Point Maps and Existence of Weighted Paths for Nonlinear Semidefinite Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 25(3), pages 381-399, August.
    19. Tong-tong Shang & Guo-ji Tang, 2023. "Mixed polynomial variational inequalities," Journal of Global Optimization, Springer, vol. 86(4), pages 953-988, August.
    20. Quoc Tran-Dinh & Anastasios Kyrillidis & Volkan Cevher, 2018. "A Single-Phase, Proximal Path-Following Framework," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1326-1347, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:79:y:2021:i:4:d:10.1007_s10898-020-00960-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.