IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v69y1997i0p209-22610.1023-a1018980928352.html
   My bibliography  Save this article

Minimizing the number of robots to meet a given cyclic schedule

Author

Listed:
  • Vladimir Kats
  • Eugene Levner

Abstract

We study a problem of cyclic no-wait scheduling of identical parts on m sequential machines. A number of robots are used to transport the parts from one machine to another. We consider the problem that has two performance measures: one is the number of robots to be used, the other is the period of a cyclic schedule. We find the minimal number of robots needed to meet a given cyclic schedule, for all possible cycle lengths, the complex-ity of the suggested algorithm being O(m 5 ), independently of the range within which the cycle length value may vary. Copyright Kluwer Academic Publishers 1997

Suggested Citation

  • Vladimir Kats & Eugene Levner, 1997. "Minimizing the number of robots to meet a given cyclic schedule," Annals of Operations Research, Springer, vol. 69(0), pages 209-226, January.
  • Handle: RePEc:spr:annopr:v:69:y:1997:i:0:p:209-226:10.1023/a:1018980928352
    DOI: 10.1023/A:1018980928352
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1018980928352
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1018980928352?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Che, Ada & Chabrol, Michelle & Gourgand, Michel & Wang, Yuan, 2012. "Scheduling multiple robots in a no-wait re-entrant robotic flowshop," International Journal of Production Economics, Elsevier, vol. 135(1), pages 199-208.
    2. Shabtay, Dvir & Arviv, Kfir & Stern, Helman & Edan, Yael, 2014. "A combined robot selection and scheduling problem for flow-shops with no-wait restrictions," Omega, Elsevier, vol. 43(C), pages 96-107.
    3. Yulia Sullivan & Marc Bourmont & Mary Dunaway, 2022. "Appraisals of harms and injustice trigger an eerie feeling that decreases trust in artificial intelligence systems," Annals of Operations Research, Springer, vol. 308(1), pages 525-548, January.
    4. Feng, Jianguang & Che, Ada & Chu, Chengbin & Levner, Eugene & Kats, Vladimir, 2024. "Scheduling robotic cells with fixed processing times or time windows: Classification, solution approaches, polynomial algorithms and complexity," European Journal of Operational Research, Elsevier, vol. 319(2), pages 468-483.
    5. Zhili Zhou & Ling Li, 2009. "A solution for cyclic scheduling of multi-hoists without overlapping," Annals of Operations Research, Springer, vol. 168(1), pages 5-21, April.
    6. Che, Ada & Chu, Chengbin, 2009. "Multi-degree cyclic scheduling of a no-wait robotic cell with multiple robots," European Journal of Operational Research, Elsevier, vol. 199(1), pages 77-88, November.
    7. Campbell, Ann Melissa & Hardin, Jill R., 2005. "Vehicle minimization for periodic deliveries," European Journal of Operational Research, Elsevier, vol. 165(3), pages 668-684, September.
    8. Janny M. Y. Leung & Guoqing Zhang & Xiaoguang Yang & Raymond Mak & Kokin Lam, 2004. "Optimal Cyclic Multi-Hoist Scheduling: A Mixed Integer Programming Approach," Operations Research, INFORMS, vol. 52(6), pages 965-976, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:69:y:1997:i:0:p:209-226:10.1023/a:1018980928352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.