IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v46y2010i3p493-499.html
   My bibliography  Save this article

A risk tolerance model for portfolio adjusting problem with transaction costs based on possibilistic moments

Author

Listed:
  • Zhang, Wei-Guo
  • Zhang, Xi-Li
  • Xu, Wei-Jun

Abstract

Due to changes of situation in financial markets and investors' preferences towards risk, an existing portfolio may not be efficient after a period of time. In this paper, we propose a possibilistic risk tolerance model for the portfolio adjusting problem based on possibility moments theory. A Sequential Minimal Optimization (SMO)-type decomposition method is developed for finding exact optimal portfolio policy without extra matrix storage. We present a simple method to estimate the possibility distributions for the returns of assets. A numerical example is provided to illustrate the effectiveness of the proposed models and approaches.

Suggested Citation

  • Zhang, Wei-Guo & Zhang, Xi-Li & Xu, Wei-Jun, 2010. "A risk tolerance model for portfolio adjusting problem with transaction costs based on possibilistic moments," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 493-499, June.
  • Handle: RePEc:eee:insuma:v:46:y:2010:i:3:p:493-499
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(10)00009-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael J. Best & Jaroslava Hlouskova, 2000. "The efficient frontier for bounded assets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 52(2), pages 195-212, November.
    2. Best, Michael J. & Grauer, Robert R., 1990. "The efficient set mathematics when mean-variance problems are subject to general linear constraints," Journal of Economics and Business, Elsevier, vol. 42(2), pages 105-120, May.
    3. Leon, T. & Liern, V. & Vercher, E., 2002. "Viability of infeasible portfolio selection problems: A fuzzy approach," European Journal of Operational Research, Elsevier, vol. 139(1), pages 178-189, May.
    4. Paul A. Samuelson, 1970. "The Fundamental Approximation Theorem of Portfolio Analysis in terms of Means, Variances and Higher Moments," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 37(4), pages 537-542.
    5. Zhang, Wei-Guo & Wang, Ying-Luo, 2008. "An analytic derivation of admissible efficient frontier with borrowing," European Journal of Operational Research, Elsevier, vol. 184(1), pages 229-243, January.
    6. Giove, Silvio & Funari, Stefania & Nardelli, Carla, 2006. "An interval portfolio selection problem based on regret function," European Journal of Operational Research, Elsevier, vol. 170(1), pages 253-264, April.
    7. Zhang, Wei-Guo & Zhang, Xi-Li & Xiao, Wei-Lin, 2009. "Portfolio selection under possibilistic mean-variance utility and a SMO algorithm," European Journal of Operational Research, Elsevier, vol. 197(2), pages 693-700, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    2. Yong-Jun Liu & Wei-Guo Zhang, 2018. "Multiperiod Fuzzy Portfolio Selection Optimization Model Based on Possibility Theory," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(03), pages 941-968, May.
    3. Zhang, Xili & Zhang, Weiguo & Xiao, Weilin, 2013. "Multi-period portfolio optimization under possibility measures," Economic Modelling, Elsevier, vol. 35(C), pages 401-408.
    4. repec:grm:ecoyun:201619 is not listed on IDEAS
    5. Guo, Sini & Yu, Lean & Li, Xiang & Kar, Samarjit, 2016. "Fuzzy multi-period portfolio selection with different investment horizons," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1026-1035.
    6. Liu, Fang & Zhang, Wei-Guo & Zhang, Li-Hua, 2014. "Consistency analysis of triangular fuzzy reciprocal preference relations," European Journal of Operational Research, Elsevier, vol. 235(3), pages 718-726.
    7. Liu, Yong-Jun & Zhang, Wei-Guo, 2013. "Fuzzy portfolio optimization model under real constraints," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 704-711.
    8. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    9. Yong-Jun Liu & Wei-Guo Zhang, 2018. "Fuzzy portfolio selection model with real features and different decision behaviors," Fuzzy Optimization and Decision Making, Springer, vol. 17(3), pages 317-336, September.
    10. Ying Fu & Kien Ng & Boray Huang & Huei Huang, 2015. "Portfolio optimization with transaction costs: a two-period mean-variance model," Annals of Operations Research, Springer, vol. 233(1), pages 135-156, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Wei-Guo & Zhang, Xili & Chen, Yunxia, 2011. "Portfolio adjusting optimization with added assets and transaction costs based on credibility measures," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 353-360.
    2. Zhang, Wei-Guo & Zhang, Xi-Li & Xiao, Wei-Lin, 2009. "Portfolio selection under possibilistic mean-variance utility and a SMO algorithm," European Journal of Operational Research, Elsevier, vol. 197(2), pages 693-700, September.
    3. Tsaur, Ruey-Chyn, 2013. "Fuzzy portfolio model with different investor risk attitudes," European Journal of Operational Research, Elsevier, vol. 227(2), pages 385-390.
    4. Zhang, Wei-Guo & Xiao, Wei-Lin & Xu, Wei-Jun, 2010. "A possibilistic portfolio adjusting model with new added assets," Economic Modelling, Elsevier, vol. 27(1), pages 208-213, January.
    5. Ruey-Chyn Tsaur, 2015. "Fuzzy portfolio model with fuzzy-input return rates and fuzzy-output proportions," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(3), pages 438-450, February.
    6. Zhang, Xili & Zhang, Weiguo & Xiao, Weilin, 2013. "Multi-period portfolio optimization under possibility measures," Economic Modelling, Elsevier, vol. 35(C), pages 401-408.
    7. Chen, Wei & Zhang, Wei-Guo, 2010. "The admissible portfolio selection problem with transaction costs and an improved PSO algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2070-2076.
    8. Yong-Jun Liu & Wei-Guo Zhang, 2018. "Multiperiod Fuzzy Portfolio Selection Optimization Model Based on Possibility Theory," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(03), pages 941-968, May.
    9. Zhang, Wei-Guo & Liu, Yong-Jun & Xu, Wei-Jun, 2012. "A possibilistic mean-semivariance-entropy model for multi-period portfolio selection with transaction costs," European Journal of Operational Research, Elsevier, vol. 222(2), pages 341-349.
    10. Xi-li Zhang & Wei-Guo Zhang & Wei-jun Xu & Wei-Lin Xiao, 2010. "Possibilistic Approaches to Portfolio Selection Problem with General Transaction Costs and a CLPSO Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 36(3), pages 191-200, October.
    11. Yong-Jun Liu & Wei-Guo Zhang & Jun-Bo Wang, 2016. "Multi-period cardinality constrained portfolio selection models with interval coefficients," Annals of Operations Research, Springer, vol. 244(2), pages 545-569, September.
    12. Yin-Yin Huang & Ruey-Chyn Tsaur & Nei-Chin Huang, 2022. "Sustainable Fuzzy Portfolio Selection Concerning Multi-Objective Risk Attitudes in Group Decision," Mathematics, MDPI, vol. 10(18), pages 1-15, September.
    13. Liu, Yong-Jun & Zhang, Wei-Guo, 2013. "Fuzzy portfolio optimization model under real constraints," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 704-711.
    14. Akhter Mohiuddin Rather & V. N. Sastry & Arun Agarwal, 2017. "Stock market prediction and Portfolio selection models: a survey," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 558-579, September.
    15. Kuen-Suan Chen & Ruey-Chyn Tsaur & Nei-Chih Lin, 2022. "Dimensions Analysis to Excess Investment in Fuzzy Portfolio Model from the Threshold of Guaranteed Return Rates," Mathematics, MDPI, vol. 11(1), pages 1-13, December.
    16. Ruey-Chyn Tsaur & Chien-Liang Chiu & Yin-Yin Huang, 2021. "Fuzzy Portfolio Selection in COVID-19 Spreading Period Using Fuzzy Goal Programming Model," Mathematics, MDPI, vol. 9(8), pages 1-15, April.
    17. Zhang, Wei-Guo & Wang, Ying-Luo, 2008. "An analytic derivation of admissible efficient frontier with borrowing," European Journal of Operational Research, Elsevier, vol. 184(1), pages 229-243, January.
    18. Ravi Kashyap, 2024. "The Blockchain Risk Parity Line: Moving From The Efficient Frontier To The Final Frontier Of Investments," Papers 2407.09536, arXiv.org.
    19. Kuen-Suan Chen & Yin-Yin Huang & Ruey-Chyn Tsaur & Nei-Yu Lin, 2023. "Fuzzy Portfolio Selection in the Risk Attitudes of Dimension Analysis under the Adjustable Security Proportions," Mathematics, MDPI, vol. 11(5), pages 1-16, February.
    20. Zhang Peng & Gong Heshan & Lan Weiting, 2017. "Multi-Period Mean-Absolute Deviation Fuzzy Portfolio Selection Model with Entropy Constraints," Journal of Systems Science and Information, De Gruyter, vol. 4(5), pages 428-443, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:46:y:2010:i:3:p:493-499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.