IDEAS home Printed from https://ideas.repec.org/a/bpj/jossai/v4y2017i5p428-443n4.html
   My bibliography  Save this article

Multi-Period Mean-Absolute Deviation Fuzzy Portfolio Selection Model with Entropy Constraints

Author

Listed:
  • Zhang Peng

    (School of Economics, Wuhan University of Technology, Wuhan430070, China)

  • Gong Heshan

    (School of Economics, Wuhan University of Technology, Wuhan430070, China)

  • Lan Weiting

    (School of Economics, Wuhan University of Technology, Wuhan430070, China)

Abstract

This paper considers a multi-period fuzzy portfolio selection problem maximizing the terminal wealth imposed by risk control, in which the returns of assets are characterized by fuzzy numbers. A fuzzy absolute deviation is originally defined as the risk control of portfolio. Entropy constraints and borrowing constraints are added in the portfolio selection model. Based on the theories of possibility measures, a new multi-period portfolio optimization model with transaction costs is proposed. And then, the proposed model is transformed into a crisp nonlinear programming problem by using fuzzy programming approach. Because of the transaction costs, the multi-period portfolio selection is the dynamic optimization problem with path dependence. Through changing the cost function into a variable, the multi-period portfolio selection is approximately turned into the dynamic programming. Furthermore, the discrete approximate iteration method is designed to obtain the optimal portfolio strategy. Finally, an example is given to illustrate the behavior of the proposed model and the designed algorithm using real data from the Shanghai Stock Exchange.

Suggested Citation

  • Zhang Peng & Gong Heshan & Lan Weiting, 2017. "Multi-Period Mean-Absolute Deviation Fuzzy Portfolio Selection Model with Entropy Constraints," Journal of Systems Science and Information, De Gruyter, vol. 4(5), pages 428-443, October.
  • Handle: RePEc:bpj:jossai:v:4:y:2017:i:5:p:428-443:n:4
    DOI: 10.21078/JSSI-2016-428-16
    as

    Download full text from publisher

    File URL: https://doi.org/10.21078/JSSI-2016-428-16
    Download Restriction: no

    File URL: https://libkey.io/10.21078/JSSI-2016-428-16?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yu, Mei & Takahashi, Satoru & Inoue, Hiroshi & Wang, Shouyang, 2010. "Dynamic portfolio optimization with risk control for absolute deviation model," European Journal of Operational Research, Elsevier, vol. 201(2), pages 349-364, March.
    2. Leon, T. & Liern, V. & Vercher, E., 2002. "Viability of infeasible portfolio selection problems: A fuzzy approach," European Journal of Operational Research, Elsevier, vol. 139(1), pages 178-189, May.
    3. Gulpinar, Nalan & Rustem, Berc, 2007. "Worst-case robust decisions for multi-period mean-variance portfolio optimization," European Journal of Operational Research, Elsevier, vol. 183(3), pages 981-1000, December.
    4. Giove, Silvio & Funari, Stefania & Nardelli, Carla, 2006. "An interval portfolio selection problem based on regret function," European Journal of Operational Research, Elsevier, vol. 170(1), pages 253-264, April.
    5. Fang, Yong & Lai, K.K. & Wang, Shou-Yang, 2006. "Portfolio rebalancing model with transaction costs based on fuzzy decision theory," European Journal of Operational Research, Elsevier, vol. 175(2), pages 879-893, December.
    6. Zhang, Wei-Guo & Liu, Yong-Jun & Xu, Wei-Jun, 2012. "A possibilistic mean-semivariance-entropy model for multi-period portfolio selection with transaction costs," European Journal of Operational Research, Elsevier, vol. 222(2), pages 341-349.
    7. Li, Xiang & Qin, Zhongfeng & Kar, Samarjit, 2010. "Mean-variance-skewness model for portfolio selection with fuzzy returns," European Journal of Operational Research, Elsevier, vol. 202(1), pages 239-247, April.
    8. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    9. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    10. Liu, Yong-Jun & Zhang, Wei-Guo & Zhang, Pu, 2013. "A multi-period portfolio selection optimization model by using interval analysis," Economic Modelling, Elsevier, vol. 33(C), pages 113-119.
    11. Tanaka, Hideo & Guo, Peijun, 1999. "Portfolio selection based on upper and lower exponential possibility distributions," European Journal of Operational Research, Elsevier, vol. 114(1), pages 115-126, April.
    12. Hakansson, Nils H, 1971. "Multi-Period Mean-Variance Analysis: Toward A General Theory of Portfolio Choice," Journal of Finance, American Finance Association, vol. 26(4), pages 857-884, September.
    13. Charles D. Feinstein & Mukund N. Thapa, 1993. "Notes: A Reformulation of a Mean-Absolute Deviation Portfolio Optimization Model," Management Science, INFORMS, vol. 39(12), pages 1552-1553, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    2. Yong-Jun Liu & Wei-Guo Zhang, 2018. "Multiperiod Fuzzy Portfolio Selection Optimization Model Based on Possibility Theory," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(03), pages 941-968, May.
    3. Guo, Sini & Yu, Lean & Li, Xiang & Kar, Samarjit, 2016. "Fuzzy multi-period portfolio selection with different investment horizons," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1026-1035.
    4. Zhang, Wei-Guo & Liu, Yong-Jun & Xu, Wei-Jun, 2012. "A possibilistic mean-semivariance-entropy model for multi-period portfolio selection with transaction costs," European Journal of Operational Research, Elsevier, vol. 222(2), pages 341-349.
    5. Zhang, Xili & Zhang, Weiguo & Xiao, Weilin, 2013. "Multi-period portfolio optimization under possibility measures," Economic Modelling, Elsevier, vol. 35(C), pages 401-408.
    6. Tsaur, Ruey-Chyn, 2013. "Fuzzy portfolio model with different investor risk attitudes," European Journal of Operational Research, Elsevier, vol. 227(2), pages 385-390.
    7. P. Kumar & Jyotirmayee Behera & A. K. Bhurjee, 2022. "Solving mean-VaR portfolio selection model with interval-typed random parameter using interval analysis," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 41-77, March.
    8. Buckley, Winston S. & Brown, Garfield O. & Marshall, Mario, 2012. "A mispricing model of stocks under asymmetric information," European Journal of Operational Research, Elsevier, vol. 221(3), pages 584-592.
    9. Najafi, Amir Abbas & Mushakhian, Siamak, 2015. "Multi-stage stochastic mean–semivariance–CVaR portfolio optimization under transaction costs," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 445-458.
    10. Liu, Yong-Jun & Zhang, Wei-Guo & Zhang, Pu, 2013. "A multi-period portfolio selection optimization model by using interval analysis," Economic Modelling, Elsevier, vol. 33(C), pages 113-119.
    11. Ruey-Chyn Tsaur, 2015. "Fuzzy portfolio model with fuzzy-input return rates and fuzzy-output proportions," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(3), pages 438-450, February.
    12. Jianjian Wang & Feng He & Xin Shi, 2019. "Numerical solution of a general interval quadratic programming model for portfolio selection," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-16, March.
    13. Yong-Jun Liu & Wei-Guo Zhang & Jun-Bo Wang, 2016. "Multi-period cardinality constrained portfolio selection models with interval coefficients," Annals of Operations Research, Springer, vol. 244(2), pages 545-569, September.
    14. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    15. Takashi Hasuike & Mukesh Kumar Mehlawat, 2018. "Investor-friendly and robust portfolio selection model integrating forecasts for financial tendency and risk-averse," Annals of Operations Research, Springer, vol. 269(1), pages 205-221, October.
    16. Zhang, Wei-Guo & Zhang, Xili & Chen, Yunxia, 2011. "Portfolio adjusting optimization with added assets and transaction costs based on credibility measures," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 353-360.
    17. Zhang, Wei-Guo & Zhang, Xi-Li & Xiao, Wei-Lin, 2009. "Portfolio selection under possibilistic mean-variance utility and a SMO algorithm," European Journal of Operational Research, Elsevier, vol. 197(2), pages 693-700, September.
    18. Yu, Mei & Takahashi, Satoru & Inoue, Hiroshi & Wang, Shouyang, 2010. "Dynamic portfolio optimization with risk control for absolute deviation model," European Journal of Operational Research, Elsevier, vol. 201(2), pages 349-364, March.
    19. Leon, T. & Liern, V. & Vercher, E., 2002. "Viability of infeasible portfolio selection problems: A fuzzy approach," European Journal of Operational Research, Elsevier, vol. 139(1), pages 178-189, May.
    20. Ying Fu & Kien Ng & Boray Huang & Huei Huang, 2015. "Portfolio optimization with transaction costs: a two-period mean-variance model," Annals of Operations Research, Springer, vol. 233(1), pages 135-156, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jossai:v:4:y:2017:i:5:p:428-443:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.