IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v288y2021i1p343-345.html
   My bibliography  Save this article

A note on “Portfolio selection under possibilistic mean-variance utility and a SMO algorithm”

Author

Listed:
  • Corazza, Marco

Abstract

In a paper published in this journal – Zhang W.-G., Zhang X.-L., Xiao W.-L. (2009), Portfolio selection under possibilistic mean-variance utility and a SMO algorithm. European Journal of Operational Research, 197(2), 693-700 –, the Authors investigate a fuzzy approach to the portfolio selection problem in which the stock returns are represented in terms of trapezoidal fuzzy numbers. In this note, we show that the expression provided for the possibilistic covariance is not consistent with the definition of possibilistic covariance given in the paper itself, and we derive the right expression for such a covariance.

Suggested Citation

  • Corazza, Marco, 2021. "A note on “Portfolio selection under possibilistic mean-variance utility and a SMO algorithm”," European Journal of Operational Research, Elsevier, vol. 288(1), pages 343-345.
  • Handle: RePEc:eee:ejores:v:288:y:2021:i:1:p:343-345
    DOI: 10.1016/j.ejor.2020.05.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720304859
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.05.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Wei-Guo & Zhang, Xi-Li & Xiao, Wei-Lin, 2009. "Portfolio selection under possibilistic mean-variance utility and a SMO algorithm," European Journal of Operational Research, Elsevier, vol. 197(2), pages 693-700, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xili & Zhang, Weiguo & Xiao, Weilin, 2013. "Multi-period portfolio optimization under possibility measures," Economic Modelling, Elsevier, vol. 35(C), pages 401-408.
    2. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    3. Yong-Jun Liu & Wei-Guo Zhang, 2018. "Multiperiod Fuzzy Portfolio Selection Optimization Model Based on Possibility Theory," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(03), pages 941-968, May.
    4. Zhang, Wei-Guo & Liu, Yong-Jun & Xu, Wei-Jun, 2012. "A possibilistic mean-semivariance-entropy model for multi-period portfolio selection with transaction costs," European Journal of Operational Research, Elsevier, vol. 222(2), pages 341-349.
    5. K. Liagkouras & K. Metaxiotis, 2019. "Improving the performance of evolutionary algorithms: a new approach utilizing information from the evolutionary process and its application to the fuzzy portfolio optimization problem," Annals of Operations Research, Springer, vol. 272(1), pages 119-137, January.
    6. Akhter Mohiuddin Rather & V. N. Sastry & Arun Agarwal, 2017. "Stock market prediction and Portfolio selection models: a survey," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 558-579, September.
    7. Xi-li Zhang & Wei-Guo Zhang & Wei-jun Xu & Wei-Lin Xiao, 2010. "Possibilistic Approaches to Portfolio Selection Problem with General Transaction Costs and a CLPSO Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 36(3), pages 191-200, October.
    8. Zhang, Wei-Guo & Xiao, Wei-Lin & Xu, Wei-Jun, 2010. "A possibilistic portfolio adjusting model with new added assets," Economic Modelling, Elsevier, vol. 27(1), pages 208-213, January.
    9. Guo, Sini & Yu, Lean & Li, Xiang & Kar, Samarjit, 2016. "Fuzzy multi-period portfolio selection with different investment horizons," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1026-1035.
    10. Marco Corazza & Carla Nardelli, 2019. "Possibilistic mean–variance portfolios versus probabilistic ones: the winner is..," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 51-75, June.
    11. Liu, Yong-Jun & Zhang, Wei-Guo & Zhang, Pu, 2013. "A multi-period portfolio selection optimization model by using interval analysis," Economic Modelling, Elsevier, vol. 33(C), pages 113-119.
    12. Jianjian Wang & Feng He & Xin Shi, 2019. "Numerical solution of a general interval quadratic programming model for portfolio selection," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-16, March.
    13. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    14. Bernard, C. & Vanduffel, S., 2014. "Mean–variance optimal portfolios in the presence of a benchmark with applications to fraud detection," European Journal of Operational Research, Elsevier, vol. 234(2), pages 469-480.
    15. Yong-Jun Liu & Wei-Guo Zhang & Jun-Bo Wang, 2016. "Multi-period cardinality constrained portfolio selection models with interval coefficients," Annals of Operations Research, Springer, vol. 244(2), pages 545-569, September.
    16. Chen, An & Li, Hong & Schultze, Mark, 2022. "Collective longevity swap: A novel longevity risk transfer solution and its economic pricing," Journal of Economic Behavior & Organization, Elsevier, vol. 201(C), pages 227-249.
    17. Zhang, Wei-Guo & Zhang, Xili & Chen, Yunxia, 2011. "Portfolio adjusting optimization with added assets and transaction costs based on credibility measures," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 353-360.
    18. Hirschberger, Markus & Qi, Yue & Steuer, Ralph E., 2010. "Large-scale MV efficient frontier computation via a procedure of parametric quadratic programming," European Journal of Operational Research, Elsevier, vol. 204(3), pages 581-588, August.
    19. Li, Xiang & Shou, Biying & Qin, Zhongfeng, 2012. "An expected regret minimization portfolio selection model," European Journal of Operational Research, Elsevier, vol. 218(2), pages 484-492.
    20. Yu, Bosco Wing-Tong & Pang, Wan Kai & Troutt, Marvin D. & Hou, Shui Hung, 2009. "Objective comparisons of the optimal portfolios corresponding to different utility functions," European Journal of Operational Research, Elsevier, vol. 199(2), pages 604-610, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:288:y:2021:i:1:p:343-345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.