A possibilistic mean-semivariance-entropy model for multi-period portfolio selection with transaction costs
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ejor.2012.04.023
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yu, Jing-Rung & Lee, Wen-Yi, 2011. "Portfolio rebalancing model using multiple criteria," European Journal of Operational Research, Elsevier, vol. 209(2), pages 166-175, March.
- Giove, Silvio & Funari, Stefania & Nardelli, Carla, 2006. "An interval portfolio selection problem based on regret function," European Journal of Operational Research, Elsevier, vol. 170(1), pages 253-264, April.
- Fang, Yong & Lai, K.K. & Wang, Shou-Yang, 2006. "Portfolio rebalancing model with transaction costs based on fuzzy decision theory," European Journal of Operational Research, Elsevier, vol. 175(2), pages 879-893, December.
- Elton, Edwin J & Gruber, Martin J, 1974. "On the Optimality of Some Multiperiod Portfolio Selection Criteria," The Journal of Business, University of Chicago Press, vol. 47(2), pages 231-243, April.
- Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
- Zhang, Wei-Guo & Xiao, Wei-Lin & Xu, Wei-Jun, 2010. "A possibilistic portfolio adjusting model with new added assets," Economic Modelling, Elsevier, vol. 27(1), pages 208-213, January.
- Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
- Robert R. Grauer & Nils H. Hakansson, 1993. "On the Use of Mean-Variance and Quadratic Approximations in Implementing Dynamic Investment Strategies: A Comparison of Returns and Investment Policies," Management Science, INFORMS, vol. 39(7), pages 856-871, July.
- Elton, Edwin J & Gruber, Martin J, 1974. "The Multi-Period Consumption Investment Problem and Single Period Analysis," Oxford Economic Papers, Oxford University Press, vol. 26(2), pages 289-301, July.
- Abrams, Robert A & Karmarkar, Uday S, 1980. "Optimal Multiperiod Investment-Consumption Policies," Econometrica, Econometric Society, vol. 48(2), pages 333-353, March.
- Crama, Y. & Schyns, M., 2003. "Simulated annealing for complex portfolio selection problems," European Journal of Operational Research, Elsevier, vol. 150(3), pages 546-571, November.
- Celikyurt, U. & Ozekici, S., 2007. "Multiperiod portfolio optimization models in stochastic markets using the mean-variance approach," European Journal of Operational Research, Elsevier, vol. 179(1), pages 186-202, May.
- Zhang, Wei-Guo & Wang, Ying-Luo, 2008. "An analytic derivation of admissible efficient frontier with borrowing," European Journal of Operational Research, Elsevier, vol. 184(1), pages 229-243, January.
- Hakansson, Nils H, 1971. "Multi-Period Mean-Variance Analysis: Toward A General Theory of Portfolio Choice," Journal of Finance, American Finance Association, vol. 26(4), pages 857-884, September.
- Gulpinar, Nalan & Rustem, Berc, 2007. "Worst-case robust decisions for multi-period mean-variance portfolio optimization," European Journal of Operational Research, Elsevier, vol. 183(3), pages 981-1000, December.
- Zhang, Wei-Guo & Zhang, Xi-Li & Xiao, Wei-Lin, 2009. "Portfolio selection under possibilistic mean-variance utility and a SMO algorithm," European Journal of Operational Research, Elsevier, vol. 197(2), pages 693-700, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xi Zhang & Xu Wu & Linlin Zhang & Zhonglu Chen, 2022. "The Evaluation of Mean-Detrended Cross-Correlation Analysis Portfolio Strategy for Multiple risk Assets," Evaluation Review, , vol. 46(2), pages 138-164, April.
- Yong-Jun Liu & Wei-Guo Zhang, 2018. "Multiperiod Fuzzy Portfolio Selection Optimization Model Based on Possibility Theory," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(03), pages 941-968, May.
- Zhang, Xili & Zhang, Weiguo & Xiao, Weilin, 2013. "Multi-period portfolio optimization under possibility measures," Economic Modelling, Elsevier, vol. 35(C), pages 401-408.
- Longsheng Cheng & Mahboubeh Shadabfar & Arash Sioofy Khoojine, 2023. "A State-of-the-Art Review of Probabilistic Portfolio Management for Future Stock Markets," Mathematics, MDPI, vol. 11(5), pages 1-34, February.
- Guo, Sini & Gu, Jia-Wen & Ching, Wai-Ki, 2021. "Adaptive online portfolio selection with transaction costs," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1074-1086.
- Liu, Yong-Jun & Zhang, Wei-Guo & Zhang, Pu, 2013. "A multi-period portfolio selection optimization model by using interval analysis," Economic Modelling, Elsevier, vol. 33(C), pages 113-119.
- Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
- Guo, Sini & Yu, Lean & Li, Xiang & Kar, Samarjit, 2016. "Fuzzy multi-period portfolio selection with different investment horizons," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1026-1035.
- Carroll, Rachael & Conlon, Thomas & Cotter, John & Salvador, Enrique, 2017. "Asset allocation with correlation: A composite trade-off," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1164-1180.
- Wulan Anggraeni & Sudradjat Supian & Sukono & Nurfadhlina Abdul Halim, 2023. "Catastrophe Bond Diversification Strategy Using Probabilistic–Possibilistic Bijective Transformation and Credibility Measures in Fuzzy Environment," Mathematics, MDPI, vol. 11(16), pages 1-30, August.
- Liu, Yong-Jun & Zhang, Wei-Guo, 2013. "Fuzzy portfolio optimization model under real constraints," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 704-711.
- Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
- K. Liagkouras & K. Metaxiotis, 2019. "Improving the performance of evolutionary algorithms: a new approach utilizing information from the evolutionary process and its application to the fuzzy portfolio optimization problem," Annals of Operations Research, Springer, vol. 272(1), pages 119-137, January.
- Ponta, Linda & Carbone, Anna, 2018. "Information measure for financial time series: Quantifying short-term market heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 132-144.
- Ling, Aifan & Sun, Jie & Wang, Meihua, 2020. "Robust multi-period portfolio selection based on downside risk with asymmetrically distributed uncertainty set," European Journal of Operational Research, Elsevier, vol. 285(1), pages 81-95.
- Yong-Jun Liu & Wei-Guo Zhang, 2019. "Possibilistic Moment Models for Multi-period Portfolio Selection with Fuzzy Returns," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1657-1686, April.
- Yong-Jun Liu & Wei-Guo Zhang, 2018. "Fuzzy portfolio selection model with real features and different decision behaviors," Fuzzy Optimization and Decision Making, Springer, vol. 17(3), pages 317-336, September.
- Ma, Shuai & Ma, Xiaoteng & Xia, Li, 2023. "A unified algorithm framework for mean-variance optimization in discounted Markov decision processes," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1057-1067.
- Najafi, Amir Abbas & Mushakhian, Siamak, 2015. "Multi-stage stochastic mean–semivariance–CVaR portfolio optimization under transaction costs," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 445-458.
- Zhang Peng & Gong Heshan & Lan Weiting, 2017. "Multi-Period Mean-Absolute Deviation Fuzzy Portfolio Selection Model with Entropy Constraints," Journal of Systems Science and Information, De Gruyter, vol. 4(5), pages 428-443, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
- Zhang, Xili & Zhang, Weiguo & Xiao, Weilin, 2013. "Multi-period portfolio optimization under possibility measures," Economic Modelling, Elsevier, vol. 35(C), pages 401-408.
- Yong-Jun Liu & Wei-Guo Zhang, 2018. "Multiperiod Fuzzy Portfolio Selection Optimization Model Based on Possibility Theory," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(03), pages 941-968, May.
- Buckley, Winston S. & Brown, Garfield O. & Marshall, Mario, 2012. "A mispricing model of stocks under asymmetric information," European Journal of Operational Research, Elsevier, vol. 221(3), pages 584-592.
- Jianfeng Liang & Shuzhong Zhang & Duan Li, 2008. "Optioned Portfolio Selection: Models And Analysis," Mathematical Finance, Wiley Blackwell, vol. 18(4), pages 569-593, October.
- Najafi, Amir Abbas & Mushakhian, Siamak, 2015. "Multi-stage stochastic mean–semivariance–CVaR portfolio optimization under transaction costs," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 445-458.
- Zhang Peng & Gong Heshan & Lan Weiting, 2017. "Multi-Period Mean-Absolute Deviation Fuzzy Portfolio Selection Model with Entropy Constraints," Journal of Systems Science and Information, De Gruyter, vol. 4(5), pages 428-443, October.
- Liu, Yong-Jun & Zhang, Wei-Guo & Zhang, Pu, 2013. "A multi-period portfolio selection optimization model by using interval analysis," Economic Modelling, Elsevier, vol. 33(C), pages 113-119.
- Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
- Zhang, Wei-Guo & Zhang, Xili & Chen, Yunxia, 2011. "Portfolio adjusting optimization with added assets and transaction costs based on credibility measures," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 353-360.
- Yu, Mei & Takahashi, Satoru & Inoue, Hiroshi & Wang, Shouyang, 2010. "Dynamic portfolio optimization with risk control for absolute deviation model," European Journal of Operational Research, Elsevier, vol. 201(2), pages 349-364, March.
- Glensk, Barbara & Madlener, Reinhard, 2011. "Dynamic Portfolio Selection Methods for Power Generation Assets," FCN Working Papers 16/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
- Chen, Wei & Zhang, Wei-Guo, 2010. "The admissible portfolio selection problem with transaction costs and an improved PSO algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2070-2076.
- Akhter Mohiuddin Rather & V. N. Sastry & Arun Agarwal, 2017. "Stock market prediction and Portfolio selection models: a survey," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 558-579, September.
- Zhang, Wei-Guo & Xiao, Wei-Lin & Xu, Wei-Jun, 2010. "A possibilistic portfolio adjusting model with new added assets," Economic Modelling, Elsevier, vol. 27(1), pages 208-213, January.
- Guo, Sini & Yu, Lean & Li, Xiang & Kar, Samarjit, 2016. "Fuzzy multi-period portfolio selection with different investment horizons," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1026-1035.
- Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
- Zhang, Miao & Chen, Ping, 2016. "Mean–variance asset–liability management under constant elasticity of variance process," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 11-18.
- Zhang, Wei-Guo & Zhang, Xi-Li & Xiao, Wei-Lin, 2009. "Portfolio selection under possibilistic mean-variance utility and a SMO algorithm," European Journal of Operational Research, Elsevier, vol. 197(2), pages 693-700, September.
- Bauder, David & Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2020.
"Bayesian inference of the multi-period optimal portfolio for an exponential utility,"
Journal of Multivariate Analysis, Elsevier, vol. 175(C).
- David Bauder & Taras Bodnar & Nestor Parolya & Wolfgang Schmid, 2017. "Bayesian Inference of the Multi-Period Optimal Portfolio for an Exponential Utility," Papers 1705.06533, arXiv.org.
More about this item
Keywords
Finance; Multi-period portfolio selection; Possibilistic semivariance; Possibilistic entropy; Hybrid intelligent algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:222:y:2012:i:2:p:341-349. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.