IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v196y2009i3p909-918.html
   My bibliography  Save this article

Knapsack problems with setups

Author

Listed:
  • Michel, S.
  • Perrot, N.
  • Vanderbeck, F.

Abstract

Knapsack problems with setups find their application in many concrete industrial and financial problems. Moreover, they also arise as subproblems in a Dantzig-Wolfe decomposition approach to more complex combinatorial optimization problems, where they need to be solved repeatedly and therefore efficiently. Here, we consider the multiple-class integer knapsack problem with setups. Items are partitioned into classes whose use implies a setup cost and associated capacity consumption. Item weights are assumed to be a multiple of their class weight. The total weight of selected items and setups is bounded. The objective is to maximize the difference between the profits of selected items and the fixed costs incurred for setting-up classes. A special case is the bounded integer knapsack problem with setups where each class holds a single item and its continuous version where a fraction of an item can be selected while incurring a full setup. The paper shows the extent to which classical results for the knapsack problem can be generalized to these variants with setups. In particular, an extension of the branch-and-bound algorithm of Horowitz and Sahni is developed for problems with positive setup costs. Our direct approach is compared experimentally with the approach proposed in the literature consisting in converting the problem into a multiple choice knapsack with pseudo-polynomial size.

Suggested Citation

  • Michel, S. & Perrot, N. & Vanderbeck, F., 2009. "Knapsack problems with setups," European Journal of Operational Research, Elsevier, vol. 196(3), pages 909-918, August.
  • Handle: RePEc:eee:ejores:v:196:y:2009:i:3:p:909-918
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00401-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), 2005. "Column Generation," Springer Books, Springer, number 978-0-387-25486-9, January.
    2. George B. Dantzig, 1957. "Discrete-Variable Extremum Problems," Operations Research, INFORMS, vol. 5(2), pages 266-288, April.
    3. Pisinger, David, 1995. "A minimal algorithm for the multiple-choice knapsack problem," European Journal of Operational Research, Elsevier, vol. 83(2), pages 394-410, June.
    4. Egon Balas & Eitan Zemel, 1980. "An Algorithm for Large Zero-One Knapsack Problems," Operations Research, INFORMS, vol. 28(5), pages 1130-1154, October.
    5. Sural, H. & van Wassenhove, L.N. & Potts, C.N., 1997. "The Bounded Knapsack Problem with Setups," INSEAD 97/71, INSEAD, Centre for the Management of Environmental Resources. The European Institute of Business Administration..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khanafer, Ali & Clautiaux, François & Talbi, El-Ghazali, 2010. "New lower bounds for bin packing problems with conflicts," European Journal of Operational Research, Elsevier, vol. 206(2), pages 281-288, October.
    2. Mancini, Simona & Ciavotta, Michele & Meloni, Carlo, 2021. "The Multiple Multidimensional Knapsack with Family-Split Penalties," European Journal of Operational Research, Elsevier, vol. 289(3), pages 987-998.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wishon, Christopher & Villalobos, J. Rene, 2016. "Robust efficiency measures for linear knapsack problem variants," European Journal of Operational Research, Elsevier, vol. 254(2), pages 398-409.
    2. M Hifi & M Michrafy, 2006. "A reactive local search-based algorithm for the disjunctively constrained knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 718-726, June.
    3. Sbihi, Abdelkader, 2010. "A cooperative local search-based algorithm for the Multiple-Scenario Max-Min Knapsack Problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 339-346, April.
    4. Altay, Nezih & Robinson Jr., Powell E. & Bretthauer, Kurt M., 2008. "Exact and heuristic solution approaches for the mixed integer setup knapsack problem," European Journal of Operational Research, Elsevier, vol. 190(3), pages 598-609, November.
    5. Pisinger, David, 1995. "An expanding-core algorithm for the exact 0-1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 87(1), pages 175-187, November.
    6. Silvano Martello & Paolo Toth, 2003. "An Exact Algorithm for the Two-Constraint 0--1 Knapsack Problem," Operations Research, INFORMS, vol. 51(5), pages 826-835, October.
    7. Tsesmetzis, Dimitrios & Roussaki, Ioanna & Sykas, Efstathios, 2008. "QoS-aware service evaluation and selection," European Journal of Operational Research, Elsevier, vol. 191(3), pages 1101-1112, December.
    8. Higgins Michael J. & Rivest Ronald L. & Stark Philip B., 2011. "Sharper p-Values for Stratified Election Audits," Statistics, Politics and Policy, De Gruyter, vol. 2(1), pages 1-37, October.
    9. Jooken, Jorik & Leyman, Pieter & De Causmaecker, Patrick, 2022. "A new class of hard problem instances for the 0–1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 841-854.
    10. M Hifi & M Michrafy & A Sbihi, 2004. "Heuristic algorithms for the multiple-choice multidimensional knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1323-1332, December.
    11. Mavrotas, George & Figueira, José Rui & Florios, Kostas, 2009. "Solving the bi-objective multidimensional knapsack problem exploiting the concept of core," MPRA Paper 105087, University Library of Munich, Germany.
    12. Evgeny Gurevsky & Dmitry Kopelevich & Sergey Kovalev & Mikhail Y. Kovalyov, 2023. "Integer knapsack problems with profit functions of the same value range," 4OR, Springer, vol. 21(3), pages 405-419, September.
    13. Mavrotas, George & Florios, Kostas & Figueira, José Rui, 2015. "An improved version of a core based algorithm for the multi-objective multi-dimensional knapsack problem: A computational study and comparison with meta-heuristics," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 25-43.
    14. Tobias Achterberg & Robert E. Bixby & Zonghao Gu & Edward Rothberg & Dieter Weninger, 2020. "Presolve Reductions in Mixed Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 473-506, April.
    15. Mhand Hifi & Slim Sadfi & Abdelkader Sbihi, 2004. "An Exact Algorithm for the Multiple-choice Multidimensional Knapsack Problem," Post-Print halshs-03322716, HAL.
    16. Mhand Hifi & Hedi Mhalla & Slim Sadfi, 2005. "Sensitivity of the Optimum to Perturbations of the Profit or Weight of an Item in the Binary Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 10(3), pages 239-260, November.
    17. Mhand Hifi & Slim Sadfi & Abdelkader Sbihi, 2004. "An Exact Algorithm for the Multiple-choice Multidimensional Knapsack Problem," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-03322716, HAL.
    18. Patrick Gemander & Wei-Kun Chen & Dieter Weninger & Leona Gottwald & Ambros Gleixner & Alexander Martin, 2020. "Two-row and two-column mixed-integer presolve using hashing-based pairing methods," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 205-240, October.
    19. Endre Boros & Noam Goldberg & Paul Kantor & Jonathan Word, 2011. "Optimal sequential inspection policies," Annals of Operations Research, Springer, vol. 187(1), pages 89-119, July.
    20. Pisinger, David, 1995. "A minimal algorithm for the multiple-choice knapsack problem," European Journal of Operational Research, Elsevier, vol. 83(2), pages 394-410, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:196:y:2009:i:3:p:909-918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.