IDEAS home Printed from https://ideas.repec.org/a/bpj/statpp/v2y2011i1p37n1.html
   My bibliography  Save this article

Sharper p-Values for Stratified Election Audits

Author

Listed:
  • Higgins Michael J.

    (University of California, Berkeley)

  • Rivest Ronald L.

    (Massachusetts Institute of Technology)

  • Stark Philip B.

    (University of California, Berkeley)

Abstract

Vote-tabulation audits can be used to collect evidence that the set of winners of an election (the outcome) according to the machine count is correct — that it agrees with the outcome that a full hand count of the audit trail would show. The strength of evidence is measured by the p-value of the hypothesis that the machine outcome is wrong. Smaller p-values are stronger evidence that the outcome is correct.Most states that have election audits of any kind require audit samples stratified by county for contests that cross county lines. Previous work on p-values for stratified samples based on the largest weighted overstatement of the margin used upper bounds that can be quite weak. Sharper p-values can be found by solving a 0-1 knapsack problem. For example, the 2006 U.S. Senate race in Minnesota was audited using a stratified sample of 2–8 precincts from each of 87 counties, 202 precincts in all. Earlier work (Stark 2008b) found that the p-value was no larger than 0.042. We show that it is no larger than 0.016: much stronger evidence that the machine outcome was correct.We also give algorithms for choosing how many batches to draw from each stratum to reduce the counting burden. In the 2006 Minnesota race, a stratified sample about half as large — 109 precincts versus 202 — would have given just as small a p-value if the observed maximum overstatement were the same. This would require drawing 11 precincts instead of 8 from the largest county, and 1 instead of 2 from the smallest counties. We give analogous results for the 2008 U.S. House of Representatives contests in California.

Suggested Citation

  • Higgins Michael J. & Rivest Ronald L. & Stark Philip B., 2011. "Sharper p-Values for Stratified Election Audits," Statistics, Politics and Policy, De Gruyter, vol. 2(1), pages 1-37, October.
  • Handle: RePEc:bpj:statpp:v:2:y:2011:i:1:p:37:n:1
    DOI: 10.2202/2151-7509.1031
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/2151-7509.1031
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/2151-7509.1031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pisinger, David, 1995. "An expanding-core algorithm for the exact 0-1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 87(1), pages 175-187, November.
    2. George B. Dantzig, 1957. "Discrete-Variable Extremum Problems," Operations Research, INFORMS, vol. 5(2), pages 266-288, April.
    3. Pisinger, David, 1995. "A minimal algorithm for the multiple-choice knapsack problem," European Journal of Operational Research, Elsevier, vol. 83(2), pages 394-410, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wishon, Christopher & Villalobos, J. Rene, 2016. "Robust efficiency measures for linear knapsack problem variants," European Journal of Operational Research, Elsevier, vol. 254(2), pages 398-409.
    2. Martello, Silvano & Pisinger, David & Toth, Paolo, 2000. "New trends in exact algorithms for the 0-1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 123(2), pages 325-332, June.
    3. Mhand Hifi & Slim Sadfi & Abdelkader Sbihi, 2004. "An Exact Algorithm for the Multiple-choice Multidimensional Knapsack Problem," Post-Print halshs-03322716, HAL.
    4. Sbihi, Abdelkader, 2010. "A cooperative local search-based algorithm for the Multiple-Scenario Max-Min Knapsack Problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 339-346, April.
    5. Yanhong Feng & Xu Yu & Gai-Ge Wang, 2019. "A Novel Monarch Butterfly Optimization with Global Position Updating Operator for Large-Scale 0-1 Knapsack Problems," Mathematics, MDPI, vol. 7(11), pages 1-31, November.
    6. Toth, Paolo, 2000. "Optimization engineering techniques for the exact solution of NP-hard combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 125(2), pages 222-238, September.
    7. Subhash C. Sarin & Hanif D. Sherali & Seon Ki Kim, 2014. "A branch‐and‐price approach for the stochastic generalized assignment problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(2), pages 131-143, March.
    8. Li, Xin & Qian, Zhuzhong & You, Ilsun & Lu, Sanglu, 2014. "Towards cost efficient mobile service and information management in ubiquitous environment with cloud resource scheduling," International Journal of Information Management, Elsevier, vol. 34(3), pages 319-328.
    9. Mhand Hifi & Slim Sadfi & Abdelkader Sbihi, 2004. "An Exact Algorithm for the Multiple-choice Multidimensional Knapsack Problem," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-03322716, HAL.
    10. Michel, S. & Perrot, N. & Vanderbeck, F., 2009. "Knapsack problems with setups," European Journal of Operational Research, Elsevier, vol. 196(3), pages 909-918, August.
    11. David Pisinger, 2000. "A Minimal Algorithm for the Bounded Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 12(1), pages 75-82, February.
    12. Yanasse, Horacio Hideki & Pinto Lamosa, Maria Jose, 2007. "An integrated cutting stock and sequencing problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1353-1370, December.
    13. Kateryna Czerniachowska & Marcin Hernes, 2021. "Shelf Space Allocation for Specific Products on Shelves Selected in Advance," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 316-334.
    14. Kateryna Czerniachowska, 2022. "A genetic algorithm for the retail shelf space allocation problem with virtual segments," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 364-412, March.
    15. Kyungmin Kim & Minseok Song, 2022. "Energy-Saving SSD Cache Management for Video Servers with Heterogeneous HDDs," Energies, MDPI, vol. 15(10), pages 1-16, May.
    16. Hoto, Robinson & Arenales, Marcos & Maculan, Nelson, 2007. "The one dimensional Compartmentalised Knapsack Problem: A case study," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1183-1195, December.
    17. Mavrotas, George & Figueira, José Rui & Florios, Kostas, 2009. "Solving the bi-objective multidimensional knapsack problem exploiting the concept of core," MPRA Paper 105087, University Library of Munich, Germany.
    18. Endre Boros & Noam Goldberg & Paul Kantor & Jonathan Word, 2011. "Optimal sequential inspection policies," Annals of Operations Research, Springer, vol. 187(1), pages 89-119, July.
    19. Haahr, J.T. & Lusby, R.M. & Wagenaar, J.C., 2015. "A Comparison of Optimization Methods for Solving the Depot Matching and Parking Problem," ERIM Report Series Research in Management ERS-2015-013-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    20. Christian Tipantuña & Xavier Hesselbach, 2020. "NFV-Enabled Efficient Renewable and Non-Renewable Energy Management: Requirements and Algorithms," Future Internet, MDPI, vol. 12(10), pages 1-31, October.

    More about this item

    Keywords

    post-election audits; knapsack problem;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:statpp:v:2:y:2011:i:1:p:37:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.