IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v195y2009i2p628-640.html
   My bibliography  Save this article

Assessing brand image through communalities and asymmetries in brand-to-attribute and attribute-to-brand associations

Author

Listed:
  • Torres, Anna
  • Bijmolt, Tammo H.A.

Abstract

Brand image is a key component of customer-based brand equity, and refers to the associations a consumer holds in memory. Such associations are often directional; one should distinguish between brand-to-attribute and attribute-to-brand associations. Information on these associations arise from two ways of collecting data, respectively: brand-by-brand evaluations of all attributes and attribute-by-attributes evaluations of all brands. In this paper, the authors present a methodological approach, namely correspondence analysis of matched matrices, to assess the communalities as well as asymmetries between brand-to-attribute and attribute-to-brand associations. This allows studying whether or not there is match in a brand's positioning (brand-to-attribute associations) and relative advantage (attribute-to-brand associations). The methodology results in perceptual maps visualizing brand image. The approach is illustrated in an empirical market research project in which two samples of consumers evaluated ten brands of deodorants and eleven attributes. The stability of the solution is examined using bootstrap resampling procedures.

Suggested Citation

  • Torres, Anna & Bijmolt, Tammo H.A., 2009. "Assessing brand image through communalities and asymmetries in brand-to-attribute and attribute-to-brand associations," European Journal of Operational Research, Elsevier, vol. 195(2), pages 628-640, June.
  • Handle: RePEc:eee:ejores:v:195:y:2009:i:2:p:628-640
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00202-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Svein Ottar Olsen & Ulf H Olsson, 2002. "Multientity Scaling and the Consistency of Country-of-Origin Attitudes," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 33(1), pages 149-167, March.
    2. Teas, R Kenneth & Wong, John K, 1992. "Item Context and the Stability of Entity-Based and Attribute-Based Multiattribute Scaling Methods," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 18(4), pages 536-545, March.
    3. Michael Greenacre, 2003. "Singular value decomposition of matched matrices," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(10), pages 1101-1113.
    4. Carl Eckart & Gale Young, 1936. "The approximation of one matrix by another of lower rank," Psychometrika, Springer;The Psychometric Society, vol. 1(3), pages 211-218, September.
    5. Keren, Gideon B. & Raaijmakers, Jeroen G. W., 1988. "On between-subjects versus within-subjects comparisons in testing utility theory," Organizational Behavior and Human Decision Processes, Elsevier, vol. 41(2), pages 233-247, April.
    6. Breivik, Einar & Supphellen, Magne, 2003. "Elicitation of product attributes in an evaluation context: A comparison of three elicitation techniques," Journal of Economic Psychology, Elsevier, vol. 24(1), pages 77-98, February.
    7. Dillon, William R & Frederick, Donald G & Tangpanichdee, Vanchai, 1985. "Decision Issues in Building Perceptual Product Spaces with Multi-attribute Rating Data," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 12(1), pages 47-63, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khan, Kamran & Hameed, Irfan, 2017. "The mediation of customer satisfaction and moderation of Price: Evidence from the generation Y users of cell phones," MPRA Paper 91773, University Library of Munich, Germany.
    2. Burger, Katharina & White, Leroy & Yearworth, Mike, 2019. "Developing a smart operational research with hybrid practice theories," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1137-1150.
    3. Michel Meulders & Francis Tuerlinckx & Wolf Vanpaemel, 2013. "Constrained Multilevel Latent Class Models for the Analysis of Three-Way Three-Mode Binary Data," Journal of Classification, Springer;The Classification Society, vol. 30(3), pages 306-337, October.
    4. Tammo Bijmolt & Michel Velden, 2012. "Multiattribute perceptual mapping with idiosyncratic brand and attribute sets," Marketing Letters, Springer, vol. 23(3), pages 585-601, September.
    5. Monteiro, Carlos M.F. & Dibb, Sally & Almeida, Luis Tadeu, 2010. "Revealing doctors' prescribing choice dimensions with multivariate tools: A perceptual mapping approach," European Journal of Operational Research, Elsevier, vol. 201(3), pages 909-920, March.
    6. Meulders, Michel, 2013. "An R Package for Probabilistic Latent Feature Analysis of Two-Way Two-Mode Frequencies," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 54(i14).
    7. Kamran Khan & Dr. Irfan Hameed, 2017. "The mediation of customer satisfaction and moderation of Price: Evidence from the generation Y users of cell phones," KASBIT Business Journals (KBJ), Khadim Ali Shah Bukhari Institute of Technology (KASBIT), vol. 10, pages 21-56, December.
    8. Saridakis, Charalampos & Katsikeas, Constantine S. & Angelidou, Sofia & Oikonomidou, Maria & Pratikakis, Polyvios, 2023. "Mining Twitter lists to extract brand-related associative information for celebrity endorsement," European Journal of Operational Research, Elsevier, vol. 311(1), pages 316-332.
    9. Osama Bin Ahsan, 2019. "Dimensions Of Brand Communication, Brand Image And Brand Trust As Antecedents Of Brand Loyalty," Journal of Marketing and Logistics (JML), Khadim Ali Shah Bukhari Institute of Technology (KASBIT), vol. 2, pages 31-49, January.
    10. Nicolau, Juan L., 2011. "The decision to raise firm value through a sports-business exchange: How much are Real Madrid's goals worth to its president's company's goals?," European Journal of Operational Research, Elsevier, vol. 215(1), pages 281-288, November.
    11. Gower, J.C. & Groenen, P.J.F. & van de Velden, M. & Vines, K., 2010. "Perceptual maps: the good, the bad and the ugly," ERIM Report Series Research in Management ERS-2010-011-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    12. van de Velden, Michel & van den Heuvel, Wilco & Galy, Hugo & Groenen, Patrick J.F., 2020. "Retrieving a contingency table from a correspondence analysis solution," European Journal of Operational Research, Elsevier, vol. 283(2), pages 541-548.
    13. Lam, K.Y. & van de Velden, M. & Franses, Ph.H.B.F., 2011. "Visualizing attitudes towards service levels," ERIM Report Series Research in Management ERS-2011-022-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tammo Bijmolt & Michel Velden, 2012. "Multiattribute perceptual mapping with idiosyncratic brand and attribute sets," Marketing Letters, Springer, vol. 23(3), pages 585-601, September.
    2. Torres, A. & van de Velden, M., 2005. "Perceptual mapping of mulitiple variable batteries by plotting supplementary variables in correspondence analysis of rating data," Econometric Institute Research Papers EI 2005-14, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Sewell, Daniel K., 2018. "Visualizing data through curvilinear representations of matrices," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 255-270.
    4. van Dijk, Wilco W. & van der Pligt, Joop, 1997. "The Impact of Probability and Magnitude of Outcome on Disappointment and Elation," Organizational Behavior and Human Decision Processes, Elsevier, vol. 69(3), pages 277-284, March.
    5. Jushan Bai & Serena Ng, 2020. "Simpler Proofs for Approximate Factor Models of Large Dimensions," Papers 2008.00254, arXiv.org.
    6. Adele Ravagnani & Fabrizio Lillo & Paola Deriu & Piero Mazzarisi & Francesca Medda & Antonio Russo, 2024. "Dimensionality reduction techniques to support insider trading detection," Papers 2403.00707, arXiv.org, revised May 2024.
    7. Alfredo García-Hiernaux & José Casals & Miguel Jerez, 2012. "Estimating the system order by subspace methods," Computational Statistics, Springer, vol. 27(3), pages 411-425, September.
    8. Mitzi Cubilla‐Montilla & Ana‐Belén Nieto‐Librero & Ma Purificación Galindo‐Villardón & Ma Purificación Vicente Galindo & Isabel‐María Garcia‐Sanchez, 2019. "Are cultural values sufficient to improve stakeholder engagement human and labour rights issues?," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 26(4), pages 938-955, July.
    9. Jos Berge & Henk Kiers, 1993. "An alternating least squares method for the weighted approximation of a symmetric matrix," Psychometrika, Springer;The Psychometric Society, vol. 58(1), pages 115-118, March.
    10. Shimeng Huang & Henry Wolkowicz, 2018. "Low-rank matrix completion using nuclear norm minimization and facial reduction," Journal of Global Optimization, Springer, vol. 72(1), pages 5-26, September.
    11. Antti J. Tanskanen & Jani Lukkarinen & Kari Vatanen, 2016. "Random selection of factors preserves the correlation structure in a linear factor model to a high degree," Papers 1604.05896, arXiv.org, revised Dec 2018.
    12. Jin-Xing Liu & Yong Xu & Chun-Hou Zheng & Yi Wang & Jing-Yu Yang, 2012. "Characteristic Gene Selection via Weighting Principal Components by Singular Values," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-10, July.
    13. Kargin, V. & Onatski, A., 2008. "Curve forecasting by functional autoregression," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2508-2526, November.
    14. Yoshio Takane & Forrest Young & Jan Leeuw, 1977. "Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 42(1), pages 7-67, March.
    15. W. Gibson, 1962. "On the least-squares orthogonalization of an oblique transformation," Psychometrika, Springer;The Psychometric Society, vol. 27(2), pages 193-195, June.
    16. Walter Kristof, 1967. "Orthogonal inter-battery factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 32(2), pages 199-227, June.
    17. Willem E. Saris & Marius de Pijper & Jan Mulder, 1978. "Optimal Procedures for Estimation of Factor Scores," Sociological Methods & Research, , vol. 7(1), pages 85-106, August.
    18. Nathalie Etchart-Vincent & Olivier l’Haridon, 2011. "Monetary incentives in the loss domain and behavior toward risk: An experimental comparison of three reward schemes including real losses," Journal of Risk and Uncertainty, Springer, vol. 42(1), pages 61-83, February.
    19. Merola, Giovanni Maria & Chen, Gemai, 2019. "Projection sparse principal component analysis: An efficient least squares method," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 366-382.
    20. Juan Carlos Carrasco Baquero & Verónica Lucía Caballero Serrano & Fernando Romero Cañizares & Daisy Carolina Carrasco López & David Alejandro León Gualán & Rufino Vieira Lanero & Fernando Cobo-Gradín, 2023. "Water Quality Determination Using Soil and Vegetation Communities in the Wetlands of the Andes of Ecuador," Land, MDPI, vol. 12(8), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:195:y:2009:i:2:p:628-640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.