IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v191y2008i1p45-60.html
   My bibliography  Save this article

Urban rapid transit network capacity expansion

Author

Listed:
  • Marí­n, íngel
  • Jaramillo, Patricia

Abstract

This paper examines a multi-period capacity expansion problem for rapid transit network design. The capacity expansion is realized through the location of train alignments and stations in an urban traffic context by selecting the time periods. The model maximizes the public transportation demand using a limited budget and designing lines for each period. The location problem incorporates the user decisions about mode and route. The network capacity expansion is a long-term planning problem because the network is built over several periods, in which the data (demand, resource price, etc.) are changing like the real problem changes. This complex problem cannot be solved by branch and bound, and for this reason, a heuristic approach has been defined in order to solve it. Both methods have been experimented in test networks.

Suggested Citation

  • Marí­n, íngel & Jaramillo, Patricia, 2008. "Urban rapid transit network capacity expansion," European Journal of Operational Research, Elsevier, vol. 191(1), pages 45-60, November.
  • Handle: RePEc:eee:ejores:v:191:y:2008:i:1:p:45-60
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00877-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gilbert Laporte & Juan Mesa & Francisco Ortega & Ignacio Sevillano, 2005. "Maximizing Trip Coverage in the Location of a Single Rapid Transit Alignment," Annals of Operations Research, Springer, vol. 136(1), pages 49-63, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fragkos, Ioannis & Cordeau, Jean-François & Jans, Raf, 2021. "Decomposition methods for large-scale network expansion problems," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 60-80.
    2. Cadarso, Luis & Escudero, Laureano F. & Marín, Angel, 2018. "On strategic multistage operational two-stage stochastic 0–1 optimization for the Rapid Transit Network Design problem," European Journal of Operational Research, Elsevier, vol. 271(2), pages 577-593.
    3. Lebing Wang & Jian Gang Jin & Gleb Sibul & Yi Wei, 2023. "Designing Metro Network Expansion: Deterministic and Robust Optimization Models," Networks and Spatial Economics, Springer, vol. 23(1), pages 317-347, March.
    4. Martins de Sá, Elisangela & Contreras, Ivan & Cordeau, Jean-François, 2015. "Exact and heuristic algorithms for the design of hub networks with multiple lines," European Journal of Operational Research, Elsevier, vol. 246(1), pages 186-198.
    5. Laporte, G. & Mesa, J.A. & Ortega, F.A. & Perea, F., 2011. "Planning rapid transit networks," Socio-Economic Planning Sciences, Elsevier, vol. 45(3), pages 95-104, September.
    6. Torres-Rincón, Samuel & Sánchez-Silva, Mauricio & Bastidas-Arteaga, Emilio, 2021. "A multistage stochastic program for the design and management of flexible infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    7. An, Kun & Lo, Hong K., 2016. "Two-phase stochastic program for transit network design under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 157-181.
    8. Majid Taghavi & Kai Huang, 2020. "A Lagrangian relaxation approach for stochastic network capacity expansion with budget constraints," Annals of Operations Research, Springer, vol. 284(2), pages 605-621, January.
    9. Andreas Bärmann & Alexander Martin & Hanno Schülldorf, 2017. "A Decomposition Method for Multiperiod Railway Network Expansion—With a Case Study for Germany," Transportation Science, INFORMS, vol. 51(4), pages 1102-1121, November.
    10. Szeto, W.Y. & Wu, Yongzhong, 2011. "A simultaneous bus route design and frequency setting problem for Tin Shui Wai, Hong Kong," European Journal of Operational Research, Elsevier, vol. 209(2), pages 141-155, March.
    11. Majid Taghavi & Kai Huang, 2016. "A multi‐stage stochastic programming approach for network capacity expansion with multiple sources of capacity," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(8), pages 600-614, December.
    12. Luis Cadarso & Ángel Marín, 2017. "Improved rapid transit network design model: considering transfer effects," Annals of Operations Research, Springer, vol. 258(2), pages 547-567, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hugo M. Repolho & António P. Antunes & Richard L. Church, 2013. "Optimal Location of Railway Stations: The Lisbon-Porto High-Speed Rail Line," Transportation Science, INFORMS, vol. 47(3), pages 330-343, August.
    2. Mathias Michaelis & Anita Schöbel, 2009. "Integrating line planning, timetabling, and vehicle scheduling: a customer-oriented heuristic," Public Transport, Springer, vol. 1(3), pages 211-232, August.
    3. Seyed Sina Mohri & Meisam Akbarzadeh, 2019. "Locating key stations of a metro network using bi-objective programming: discrete and continuous demand mode," Public Transport, Springer, vol. 11(2), pages 321-340, August.
    4. An, Kun & Lo, Hong K., 2016. "Two-phase stochastic program for transit network design under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 157-181.
    5. Ángel Marín & Patricia Jaramillo, 2009. "Urban rapid transit network design: accelerated Benders decomposition," Annals of Operations Research, Springer, vol. 169(1), pages 35-53, July.
    6. Tanaka, Ken-ichi & Furuta, Takehiro & Toriumi, Shigeki, 2019. "Railway flow interception location model: Model development and case study of Tokyo metropolitan railway network," Operations Research Perspectives, Elsevier, vol. 6(C).
    7. Anita Schöbel & Silvia Schwarze, 2013. "Finding delay-resistant line concepts using a game-theoretic approach," Netnomics, Springer, vol. 14(3), pages 95-117, November.
    8. An, Kun & Lo, Hong K., 2015. "Robust transit network design with stochastic demand considering development density," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 737-754.
    9. Laporte, G. & Mesa, J.A. & Ortega, F.A. & Perea, F., 2011. "Planning rapid transit networks," Socio-Economic Planning Sciences, Elsevier, vol. 45(3), pages 95-104, September.
    10. Goerigk, Marc & Schmidt, Marie, 2017. "Line planning with user-optimal route choice," European Journal of Operational Research, Elsevier, vol. 259(2), pages 424-436.
    11. M. C. López-de-los-Mozos & Juan A. Mesa, 2022. "To stop or not to stop: a time-constrained trip covering location problem on a tree network," Annals of Operations Research, Springer, vol. 316(2), pages 1039-1061, September.
    12. Canca, David & De-Los-Santos, Alicia & Laporte, Gilbert & Mesa, Juan A., 2019. "Integrated Railway Rapid Transit Network Design and Line Planning problem with maximum profit," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 1-30.
    13. Konrad Steiner & Stefan Irnich, 2018. "Schedule-Based Integrated Intercity Bus Line Planning via Branch-and-Cut," Transportation Science, INFORMS, vol. 52(4), pages 882-897, August.
    14. Wang, David Z.W. & Lo, Hong K., 2016. "Financial sustainability of rail transit service: The effect of urban development pattern," Transport Policy, Elsevier, vol. 48(C), pages 23-33.
    15. L. Escudero & S. Muñoz, 2009. "An approach for solving a modification of the extended rapid transit network design problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 320-334, December.
    16. Luis Cadarso & Ángel Marín, 2017. "Improved rapid transit network design model: considering transfer effects," Annals of Operations Research, Springer, vol. 258(2), pages 547-567, November.
    17. López-de-los-Mozos, M.C. & Mesa, Juan A. & Schöbel, Anita, 2017. "A general approach for the location of transfer points on a network with a trip covering criterion and mixed distances," European Journal of Operational Research, Elsevier, vol. 260(1), pages 108-121.
    18. Mark-Christoph Körner & Juan Mesa & Federico Perea & Anita Schöbel & Daniel Scholz, 2014. "A maximum trip covering location problem with an alternative mode of transportation on tree networks and segments," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 227-253, April.
    19. Eusebio Angulo & Ricardo García-Ródenas & José Luis Espinosa-Aranda, 2016. "A Lagrangian relaxation approach for expansion of a highway network," Annals of Operations Research, Springer, vol. 246(1), pages 101-126, November.
    20. Laporte, Gilbert & Mesa, Juan A. & Perea, Federico, 2010. "A game theoretic framework for the robust railway transit network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 447-459, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:191:y:2008:i:1:p:45-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.