IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v316y2022i2d10.1007_s10479-021-03981-w.html
   My bibliography  Save this article

To stop or not to stop: a time-constrained trip covering location problem on a tree network

Author

Listed:
  • M. C. López-de-los-Mozos

    (Universidad de Sevilla)

  • Juan A. Mesa

    (Universidad de Sevilla)

Abstract

Location of new stations/stops in public transportation networks has attracted much interest from both the point of views of theory and applications. In this paper we consider a set of pairs of points in the plane demanding traveling between the elements of each pair, and a tree network embedded in the plane representing the transportation system. An alternative mode of transportation competes with the combined plane-network mode so that the modal choice is made by distance (time) comparisons. The aim of the problem dealt with in this paper is to locate a new station/stop so that the traffic through the network would be maximized. Since stops at new stations increases the time of passengers that already used the combined mode, and may persuade them to change the mode, a constraint on the increase of the overall time is imposed. A quadratic in the number of pairs time algorithm is proposed.

Suggested Citation

  • M. C. López-de-los-Mozos & Juan A. Mesa, 2022. "To stop or not to stop: a time-constrained trip covering location problem on a tree network," Annals of Operations Research, Springer, vol. 316(2), pages 1039-1061, September.
  • Handle: RePEc:spr:annopr:v:316:y:2022:i:2:d:10.1007_s10479-021-03981-w
    DOI: 10.1007/s10479-021-03981-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-03981-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-03981-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ennio Cascetta, 2009. "Transportation Systems Analysis," Springer Optimization and Its Applications, Springer, number 978-0-387-75857-2, June.
    2. López-de-los-Mozos, M.C. & Mesa, Juan A. & Schöbel, Anita, 2017. "A general approach for the location of transfer points on a network with a trip covering criterion and mixed distances," European Journal of Operational Research, Elsevier, vol. 260(1), pages 108-121.
    3. Gilbert Laporte & Juan Mesa & Francisco Ortega & Ignacio Sevillano, 2005. "Maximizing Trip Coverage in the Location of a Single Rapid Transit Alignment," Annals of Operations Research, Springer, vol. 136(1), pages 49-63, April.
    4. Dwi Groß & Horst Hamacher & Simone Horn & Anita Schöbel, 2009. "Stop location design in public transportation networks: covering and accessibility objectives," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 335-346, December.
    5. P. M. Dearing & R. L. Francis & T. J. Lowe, 1976. "Convex Location Problems on Tree Networks," Operations Research, INFORMS, vol. 24(4), pages 628-642, August.
    6. Mark-Christoph Körner & Juan Mesa & Federico Perea & Anita Schöbel & Daniel Scholz, 2014. "A maximum trip covering location problem with an alternative mode of transportation on tree networks and segments," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 227-253, April.
    7. Anita Schöbel & Horst W. Hamacher & Annegret Liebers & Dorothea Wagner, 2009. "The Continuous Stop Location Problem In Public Transportation Networks," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 26(01), pages 13-30.
    8. Emilio Carrizosa & Jonas Harbering & Anita Schöbel, 2016. "Minimizing the passengers’ traveling time in the stop location problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(10), pages 1325-1337, October.
    9. Vukan R. Vuchic & Gordon F. Newell, 1968. "Rapid Transit Interstation Spacings for Minimum Travel Time," Transportation Science, INFORMS, vol. 2(4), pages 303-339, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schwerdfeger, Stefan & Boysen, Nils & Briskorn, Dirk & Stephan, Konrad, 2024. "Keep on moving: Optimized placement of moving walkways in airport terminals," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hugo M. Repolho & António P. Antunes & Richard L. Church, 2013. "Optimal Location of Railway Stations: The Lisbon-Porto High-Speed Rail Line," Transportation Science, INFORMS, vol. 47(3), pages 330-343, August.
    2. López-de-los-Mozos, M.C. & Mesa, Juan A. & Schöbel, Anita, 2017. "A general approach for the location of transfer points on a network with a trip covering criterion and mixed distances," European Journal of Operational Research, Elsevier, vol. 260(1), pages 108-121.
    3. Laporte, G. & Mesa, J.A. & Ortega, F.A. & Perea, F., 2011. "Planning rapid transit networks," Socio-Economic Planning Sciences, Elsevier, vol. 45(3), pages 95-104, September.
    4. Konrad Steiner & Stefan Irnich, 2018. "Schedule-Based Integrated Intercity Bus Line Planning via Branch-and-Cut," Transportation Science, INFORMS, vol. 52(4), pages 882-897, August.
    5. Perea, Federico & Mesa, Juan A. & Laporte, Gilbert, 2014. "Adding a new station and a road link to a road–rail network in the presence of modal competition," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 1-16.
    6. Schwerdfeger, Stefan & Boysen, Nils & Briskorn, Dirk & Stephan, Konrad, 2024. "Keep on moving: Optimized placement of moving walkways in airport terminals," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    7. Tanaka, Ken-ichi & Furuta, Takehiro & Toriumi, Shigeki, 2019. "Railway flow interception location model: Model development and case study of Tokyo metropolitan railway network," Operations Research Perspectives, Elsevier, vol. 6(C).
    8. Batta, Rajan & Lejeune, Miguel & Prasad, Srinivas, 2014. "Public facility location using dispersion, population, and equity criteria," European Journal of Operational Research, Elsevier, vol. 234(3), pages 819-829.
    9. Emilio Carrizosa & Jonas Harbering & Anita Schöbel, 2016. "Minimizing the passengers’ traveling time in the stop location problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(10), pages 1325-1337, October.
    10. Mark-Christoph Körner & Juan Mesa & Federico Perea & Anita Schöbel & Daniel Scholz, 2014. "A maximum trip covering location problem with an alternative mode of transportation on tree networks and segments," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 227-253, April.
    11. Konrad Steiner & Stefan Irnich, 2016. "Schedule-based integrated inter-city bus line planning via branch-and-cut," Working Papers 1608, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    12. Paola Panuccio, 2019. "Smart Planning: From City to Territorial System," Sustainability, MDPI, vol. 11(24), pages 1-15, December.
    13. Pierluigi Coppola & Fulvio Silvestri, 2021. "Gender Inequality in Safety and Security Perceptions in Railway Stations," Sustainability, MDPI, vol. 13(7), pages 1-15, April.
    14. Moccia, Luigi & Laporte, Gilbert, 2016. "Improved models for technology choice in a transit corridor with fixed demand," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 245-270.
    15. Federico Benassi & Marica D'Elia & Francesca Petrei, 2021. "The “meso” dimension of territorial capital: Evidence from Italy," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(1), pages 159-175, February.
    16. Vitalii Naumov & Andrzej Szarata & Hanna Vasiutina, 2022. "Simulating a Macrosystem of Cargo Deliveries by Road Transport Based on Big Data Volumes: A Case Study of Poland," Energies, MDPI, vol. 15(14), pages 1-23, July.
    17. Igor Lazov, 2019. "A Methodology for Revenue Analysis of Parking Lots," Networks and Spatial Economics, Springer, vol. 19(1), pages 177-198, March.
    18. Harshad Khadilkar, 2017. "Data-Enabled Stochastic Modeling for Evaluating Schedule Robustness of Railway Networks," Transportation Science, INFORMS, vol. 51(4), pages 1161-1176, November.
    19. Wang, Xinchang & Meng, Qiang & Miao, Lixin, 2016. "Delimiting port hinterlands based on intermodal network flows: Model and algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 32-51.
    20. Samanta, Sutapa & Jha, Manoj K., 2011. "Modeling a rail transit alignment considering different objectives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(1), pages 31-45, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:316:y:2022:i:2:d:10.1007_s10479-021-03981-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.