IDEAS home Printed from https://ideas.repec.org/p/aah/create/2014-44.html
   My bibliography  Save this paper

Deterministic and stochastic trends in the Lee-Carter mortality model

Author

Listed:
  • Laurent Callot

    (VU University Amsterdam, the Tinbergen Institute and CREATES)

  • Niels Haldrup

    (Aarhus University and CREATES)

  • Malene Kallestrup Lamb

    (Aarhus University and CREATES)

Abstract

The Lee and Carter (1992) model assumes that the deterministic and stochastic time series dynamics loads with identical weights when describing the development of age specific mortality rates. Effectively this means that the main characteristics of the model simplifies to a random walk model with age specific drift components. But restricting the adjustment mechanism of the stochastic and linear trend components to be identical may be a too strong simplification. In fact, the presence of a stochastic trend component may itself result from a bias induced by properly fitting the linear trend that characterizes mortality data. We find empirical evidence that this feature of the Lee-Carter model overly restricts the system dynamics and we suggest to separate the deterministic and stochastic time series components at the benefit of improved fit and forecasting performance. In fact, we find that the classical Lee-Carter model will otherwise over estimate the reduction of mortality for the younger age groups and will under estimate the reduction of mortality for the older age groups. In practice, our recommendation means that the Lee-Carter model instead of a one-factor model should be formulated as a two (or several)-factor model where one factor is deterministic and the other factors are stochastic. This feature generalizes to the range of models that extend the Lee-Carter model in various directions.

Suggested Citation

  • Laurent Callot & Niels Haldrup & Malene Kallestrup Lamb, 2014. "Deterministic and stochastic trends in the Lee-Carter mortality model," CREATES Research Papers 2014-44, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2014-44
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/14/rp14_44.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Plat, Richard, 2009. "On stochastic mortality modeling," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 393-404, December.
    2. Dorina Lazar & Michel M. Denuit, 2009. "A multivariate time series approach to projected life tables," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(6), pages 806-823, November.
    3. Ronald Lee, 2000. "The Lee-Carter Method for Forecasting Mortality, with Various Extensions and Applications," North American Actuarial Journal, Taylor & Francis Journals, vol. 4(1), pages 80-91.
    4. Booth, H. & Tickle, L., 2008. "Mortality Modelling and Forecasting: a Review of Methods," Annals of Actuarial Science, Cambridge University Press, vol. 3(1-2), pages 3-43, September.
    5. Renshaw, A. E. & Haberman, S., 2003. "Lee-Carter mortality forecasting with age-specific enhancement," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 255-272, October.
    6. Ronald Lee & Timothy Miller, 2001. "Evaluating the performance of the lee-carter method for forecasting mortality," Demography, Springer;Population Association of America (PAA), vol. 38(4), pages 537-549, November.
    7. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    8. Arthur Renshaw & Steven Haberman, 2003. "Lee–Carter mortality forecasting: a parallel generalized linear modelling approach for England and Wales mortality projections," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 119-137, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hans Oluf Hansen, 2015. "Modeling and projecting mortality. A new model of heterogeneity and selection in survivorship," Discussion Papers 15-16, University of Copenhagen. Department of Economics.
    2. Niels Haldrup & Carsten P. T. Rosenskjold, 2019. "A Parametric Factor Model of the Term Structure of Mortality," Econometrics, MDPI, vol. 7(1), pages 1-22, March.
    3. Hunt, Andrew & Villegas, Andrés M., 2015. "Robustness and convergence in the Lee–Carter model with cohort effects," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 186-202.
    4. Li, Hong & Lu, Yang, 2017. "Coherent Forecasting Of Mortality Rates: A Sparse Vector-Autoregression Approach," ASTIN Bulletin, Cambridge University Press, vol. 47(2), pages 563-600, May.
    5. Gisou Díaz-Rojo & Ana Debón & Jaime Mosquera, 2020. "Multivariate Control Chart and Lee–Carter Models to Study Mortality Changes," Mathematics, MDPI, vol. 8(11), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    2. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    3. Niels Haldrup & Carsten P. T. Rosenskjold, 2019. "A Parametric Factor Model of the Term Structure of Mortality," Econometrics, MDPI, vol. 7(1), pages 1-22, March.
    4. Carlo G. Camarda & Ugofilippo Basellini, 2021. "Smoothing, Decomposing and Forecasting Mortality Rates," European Journal of Population, Springer;European Association for Population Studies, vol. 37(3), pages 569-602, July.
    5. Han Lin Shang & Heather Booth & Rob Hyndman, 2011. "Point and interval forecasts of mortality rates and life expectancy: A comparison of ten principal component methods," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 25(5), pages 173-214.
    6. Colin O’hare & Youwei Li, 2017. "Modelling mortality: are we heading in the right direction?," Applied Economics, Taylor & Francis Journals, vol. 49(2), pages 170-187, January.
    7. Apostolos Bozikas & Georgios Pitselis, 2018. "An Empirical Study on Stochastic Mortality Modelling under the Age-Period-Cohort Framework: The Case of Greece with Applications to Insurance Pricing," Risks, MDPI, vol. 6(2), pages 1-34, April.
    8. Colin O’hare & Youwei Li, 2017. "Models of mortality rates – analysing the residuals," Applied Economics, Taylor & Francis Journals, vol. 49(52), pages 5309-5323, November.
    9. Lanza Queiroz, Bernardo & Lobo Alves Ferreira, Matheus, 2021. "The evolution of labor force participation and the expected length of retirement in Brazil," The Journal of the Economics of Ageing, Elsevier, vol. 18(C).
    10. Heather Booth & Rob Hyndman & Leonie Tickle & Piet de Jong, 2006. "Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 15(9), pages 289-310.
    11. Reese, Simon, 2015. "Asymptotic Inference in the Lee-Carter Model for Modelling Mortality Rates," Working Papers 2015:16, Lund University, Department of Economics.
    12. Geng Niu & Bertrand Melenberg, 2014. "Trends in Mortality Decrease and Economic Growth," Demography, Springer;Population Association of America (PAA), vol. 51(5), pages 1755-1773, October.
    13. Ahbab Mohammad Fazle Rabbi & Stefano Mazzuco, 2021. "Mortality Forecasting with the Lee–Carter Method: Adjusting for Smoothing and Lifespan Disparity," European Journal of Population, Springer;European Association for Population Studies, vol. 37(1), pages 97-120, March.
    14. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    15. Marie-Pier Bergeron-Boucher & Søren Kjærgaard & James E. Oeppen & James W. Vaupel, 2019. "The impact of the choice of life table statistics when forecasting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(43), pages 1235-1268.
    16. Han Lin Shang & Steven Haberman, 2020. "Retiree Mortality Forecasting: A Partial Age-Range or a Full Age-Range Model?," Risks, MDPI, vol. 8(3), pages 1-11, July.
    17. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    18. Paul Doukhan & Joseph Rynkiewicz & Yahia Salhi, 2021. "Optimal Neighborhood Selection for AR-ARCH Random Fields with Application to Mortality," Stats, MDPI, vol. 5(1), pages 1-26, December.
    19. Hyndman, Rob J. & Booth, Heather, 2008. "Stochastic population forecasts using functional data models for mortality, fertility and migration," International Journal of Forecasting, Elsevier, vol. 24(3), pages 323-342.
    20. Lydia Dutton & Athanasios A. Pantelous & Malgorzata Seklecka, 2020. "The impact of economic growth in mortality modelling for selected OECD countries," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 533-550, April.

    More about this item

    Keywords

    Mortality modelling; factor models; principal components; stochastic and deterministic trends;
    All these keywords.

    JEL classification:

    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • J1 - Labor and Demographic Economics - - Demographic Economics
    • J11 - Labor and Demographic Economics - - Demographic Economics - - - Demographic Trends, Macroeconomic Effects, and Forecasts

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2014-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.