IDEAS home Printed from https://ideas.repec.org/a/bpj/ecqcon/v25y2010i2p243-251n8.html
   My bibliography  Save this article

Optimal Replacement Policy Based on the Number of Down Times with Priority in Use

Author

Listed:
  • Hanagal David D.

    (Department of Statistics, University of Pune, Pune-411007, India.)

  • Kanade Rupali A.

    (Department of Statistics, University of Pune, Pune-411007, India.)

Abstract

This paper is an extension of the paper “Optimal Replacement Policy Based on Number of Down Times” of the authors, which was published in EQC 25/1. While the former investigated a cold standby system consisting of two identical components, the present one considers the same situation, however, with two unequal components. The first component is very reliable while the second one is less reliable. Just as in the previous paper, a replacement policy based on the number of down times in a renewal cycle is determined that maximizes the long run expected reward per unit time. The explicit expression of the long run expected reward per unit time is derived and a numerical example is given for illustration.

Suggested Citation

  • Hanagal David D. & Kanade Rupali A., 2010. "Optimal Replacement Policy Based on the Number of Down Times with Priority in Use," Stochastics and Quality Control, De Gruyter, vol. 25(2), pages 243-251, January.
  • Handle: RePEc:bpj:ecqcon:v:25:y:2010:i:2:p:243-251:n:8
    DOI: 10.1515/eqc.2010.017
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/eqc.2010.017
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/eqc.2010.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rattihalli S. R. & Hanagal David D., 2009. "A Replacement Policy Based on Down Time for a Cold Standby System with Dependent Lifetime and Repairtime," Stochastics and Quality Control, De Gruyter, vol. 24(2), pages 207-212, January.
    2. Zhang, Yuan Lin, 2007. "A discussion on "A bivariate optimal replacement policy for a repairable system"," European Journal of Operational Research, Elsevier, vol. 179(1), pages 275-276, May.
    3. Hanagal David D. & Kanade Rupali A., 2010. "Optimal Replacement Policy Based on the Number of Down Times," Stochastics and Quality Control, De Gruyter, vol. 25(1), pages 3-12, January.
    4. Zhang, Yuan Lin & Yam, Richard C.M. & Zuo, Ming J., 2007. "A bivariate optimal replacement policy for a multistate repairable system," Reliability Engineering and System Safety, Elsevier, vol. 92(4), pages 535-542.
    5. Zhang, Yuan Lin & Wang, Guan Jun, 2007. "A deteriorating cold standby repairable system with priority in use," European Journal of Operational Research, Elsevier, vol. 183(1), pages 278-295, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xufeng & Liu, Hu-Chen & Nakagawa, Toshio, 2015. "Where does “whichever occurs first†hold for preventive maintenance modelings?," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 203-211.
    2. Leung, Kit Nam Francis & Zhang, Yuan Lin & Lai, Kin Keung, 2011. "Analysis for a two-dissimilar-component cold standby repairable system with repair priority," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1542-1551.
    3. Zhao, Xufeng & Mizutani, Satoshi & Nakagawa, Toshio, 2015. "Which is better for replacement policies with continuous or discrete scheduled times?," European Journal of Operational Research, Elsevier, vol. 242(2), pages 477-486.
    4. Arnold, Richard & Chukova, Stefanka & Hayakawa, Yu & Marshall, Sarah, 2020. "Geometric-Like Processes: An Overview and Some Reliability Applications," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    5. Zhang, Yuan Lin & Wang, Guan Jun, 2009. "A geometric process repair model for a repairable cold standby system with priority in use and repair," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1782-1787.
    6. Hanagal David D. & Kanade Rupali A., 2010. "Optimal Replacement Policy Based on the Number of Down Times," Stochastics and Quality Control, De Gruyter, vol. 25(1), pages 3-12, January.
    7. Çekyay, B. & Özekici, S., 2010. "Mean time to failure and availability of semi-Markov missions with maximal repair," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1442-1454, December.
    8. Kayedpour, Farjam & Amiri, Maghsoud & Rafizadeh, Mahmoud & Shahryari Nia, Arash, 2017. "Multi-objective redundancy allocation problem for a system with repairable components considering instantaneous availability and strategy selection," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 11-20.
    9. Eryilmaz, Serkan, 2012. "On the mean residual life of a k-out-of-n:G system with a single cold standby component," European Journal of Operational Research, Elsevier, vol. 222(2), pages 273-277.
    10. Guan Jun Wang & Yuan Lin Zhang, 2016. "Optimal replacement policy for a two-dissimilar-component cold standby system with different repair actions," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(5), pages 1021-1031, April.
    11. Yu, Miaomiao & Tang, Yinghui & Liu, Liping & Cheng, Jiang, 2013. "A phase-type geometric process repair model with spare device procurement and repairman’s multiple vacations," European Journal of Operational Research, Elsevier, vol. 225(2), pages 310-323.
    12. Wang, Wei & Wu, Zhiying & Xiong, Junlin & Xu, Yaofeng, 2018. "Redundancy optimization of cold-standby systems under periodic inspection and maintenance," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 394-402.
    13. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2015. "Optimal loading of system with random repair time," European Journal of Operational Research, Elsevier, vol. 247(1), pages 137-143.
    14. Vahid Andalib & Jyotirmoy Sarkar, 2022. "A System with Two Spare Units, Two Repair Facilities, and Two Types of Repairers," Mathematics, MDPI, vol. 10(6), pages 1-13, March.
    15. Yuan, Li & Xu, Jian, 2011. "An optimal replacement policy for a repairable system based on its repairman having vacations," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 868-875.
    16. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2015. "Optimal backup frequency in system with random repair time," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 12-22.
    17. Emami-Mehrgani, Behnam & Nadeau, Sylvie & Kenné, Jean-Pierre, 2011. "Lockout/tagout and operational risks in the production control of manufacturing systems with passive redundancy," International Journal of Production Economics, Elsevier, vol. 132(2), pages 165-173, August.
    18. Junyuan Wang & Jimin Ye, 2022. "A new repair model and its optimization for cold standby system," Operational Research, Springer, vol. 22(1), pages 105-122, March.
    19. Liu, Baoliang & Cui, Lirong & Wen, Yanqing & Shen, Jingyuan, 2015. "A cold standby repairable system with working vacations and vacation interruption following Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 1-8.
    20. Liu, Baoliang & Wen, Yanqing & Qiu, Qingan & Shi, Haiyan & Chen, Jianhui, 2022. "Reliability analysis for multi-state systems under K-mixed redundancy strategy considering switching failure," Reliability Engineering and System Safety, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ecqcon:v:25:y:2010:i:2:p:243-251:n:8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.