IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v238y2024i4p853-872.html
   My bibliography  Save this article

A Markov chain-based genetic algorithm for solving a redundancy allocation problem for a system with repairable warm standby components

Author

Listed:
  • Farjam Kayedpour
  • Maghsoud Amiri
  • Mahmoud Rafizadeh
  • Arash Shahryai Nia
  • Mani Sharifi

Abstract

Many studies have been conducted on designing systems based on the redundancy allocation problem (RAP). However, considering repairable warm-standby components (which are subject to failure even in an idle state) is somewhat neglected by researchers due to the complex mathematical models. One of the crucial aspects of these systems is considering the probability of failure when switching to a standby component or subsystem. This study tries to highlight these imperfect switching and switch selection strategies in the redundancy allocation designs. In this regard, this article is dedicated to developing two RAP models (a single objective and a bi-objective) with warm standby repairable components by proposing a solving approach based on the genetic algorithm (GA) and Markov chains. Since the model’s objective functions minimize the system’s mean time to failure (MTTF) and cost, we discussed how imperfect switches affect the total system’s cost and mean time to failure for the proposed RAPs. Finally, we adopted a GA and a non-dominated sorting genetic algorithm (NSGA-II) to solve the proposed models due to the models’ complexity. Solving these models clearly indicates the critical role of selecting an appropriate switching strategy on the system’s costs and reliability.

Suggested Citation

  • Farjam Kayedpour & Maghsoud Amiri & Mahmoud Rafizadeh & Arash Shahryai Nia & Mani Sharifi, 2024. "A Markov chain-based genetic algorithm for solving a redundancy allocation problem for a system with repairable warm standby components," Journal of Risk and Reliability, , vol. 238(4), pages 853-872, August.
  • Handle: RePEc:sae:risrel:v:238:y:2024:i:4:p:853-872
    DOI: 10.1177/1748006X231164848
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X231164848
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X231164848?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Haque, Lani & Armstrong, Michael J., 2007. "A survey of the machine interference problem," European Journal of Operational Research, Elsevier, vol. 179(2), pages 469-482, June.
    2. Gholinezhad, Hadi & Zeinal Hamadani, Ali, 2017. "A new model for the redundancy allocation problem with component mixing and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 66-73.
    3. Jinting Wang & Nan Xie & Nan Yang, 2021. "Reliability analysis of a two-dissimilar-unit warm standby repairable system with priority in use," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 50(4), pages 792-814, February.
    4. Tavakkoli-Moghaddam, R. & Safari, J. & Sassani, F., 2008. "Reliability optimization of series-parallel systems with a choice of redundancy strategies using a genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 93(4), pages 550-556.
    5. Kim, Heungseob & Kim, Pansoo, 2017. "Reliability–redundancy allocation problem considering optimal redundancy strategy using parallel genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 153-160.
    6. Kumar, Pankaj & Jain, Madhu, 2020. "Reliability analysis of a multi-component machining system with service interruption, imperfect coverage, and reboot," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    7. Zhang, Yuan Lin & Wang, Guan Jun, 2007. "A deteriorating cold standby repairable system with priority in use," European Journal of Operational Research, Elsevier, vol. 183(1), pages 278-295, November.
    8. Ruiz-Castro, Juan Eloy & Fernández-Villodre, Gemma, 2012. "A complex discrete warm standby system with loss of units," European Journal of Operational Research, Elsevier, vol. 218(2), pages 456-469.
    9. Papageorgiou, Effie & Kokolakis, George, 2010. "Reliability analysis of a two-unit general parallel system with (n-2) warm standbys," European Journal of Operational Research, Elsevier, vol. 201(3), pages 821-827, March.
    10. Kuo-Hsiung Wang & Yi-Chun Liu & Wen Lea Pearn, 2005. "Cost benefit analysis of series systems with warm standby components and general repair time," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 61(2), pages 329-343, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kayedpour, Farjam & Amiri, Maghsoud & Rafizadeh, Mahmoud & Shahryari Nia, Arash, 2017. "Multi-objective redundancy allocation problem for a system with repairable components considering instantaneous availability and strategy selection," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 11-20.
    2. Wang, Wei & Wu, Zhiying & Xiong, Junlin & Xu, Yaofeng, 2018. "Redundancy optimization of cold-standby systems under periodic inspection and maintenance," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 394-402.
    3. Guilani, Pardis Pourkarim & Juybari, Mohammad N. & Ardakan, Mostafa Abouei & Kim, Heungseob, 2020. "Sequence optimization in reliability problems with a mixed strategy and heterogeneous backup scheme," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    4. Peiravi, Abdossaber & Ardakan, Mostafa Abouei & Zio, Enrico, 2020. "A new Markov-based model for reliability optimization problems with mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    5. Wang, Wei & Lin, Mingqiang & Fu, Yongnian & Luo, Xiaoping & Chen, Hanghang, 2020. "Multi-objective optimization of reliability-redundancy allocation problem for multi-type production systems considering redundancy strategies," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    6. Bakhtiar Ostadi & Ramtin Hamedankhah, 2021. "A two-stage reliability optimization approach for solving series–parallel redundancy allocation problem considering the sale of worn-out parts," Annals of Operations Research, Springer, vol. 304(1), pages 381-396, September.
    7. Golmohammadi, Elnaz & Ardakan, Mostafa Abouei, 2022. "Reliability optimization problem with the mixed strategy, degrading components, and a periodic inspection and maintenance policy," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    8. Zaretalab, Arash & Sharifi, Mani & Guilani, Pedram Pourkarim & Taghipour, Sharareh & Niaki, Seyed Taghi Akhavan, 2022. "A multi-objective model for optimizing the redundancy allocation, component supplier selection, and reliable activities for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    9. Gholinezhad, Hadi & Zeinal Hamadani, Ali, 2017. "A new model for the redundancy allocation problem with component mixing and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 66-73.
    10. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2018. "Optimizing availability of heterogeneous standby systems exposed to shocks," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 137-145.
    11. Ouyang, Zhiyuan & Liu, Yu & Ruan, Sheng-Jia & Jiang, Tao, 2019. "An improved particle swarm optimization algorithm for reliability-redundancy allocation problem with mixed redundancy strategy and heterogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 62-74.
    12. Ruiz-Castro, Juan Eloy & Dawabsha, Mohammed & Alonso, Francisco Javier, 2018. "Discrete-time Markovian arrival processes to model multi-state complex systems with loss of units and an indeterminate variable number of repairpersons," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 114-127.
    13. Coit, David W. & Zio, Enrico, 2019. "The evolution of system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    14. Meisam Sadeghi & Emad Roghanian & Hamid Shahriari & Hassan Sadeghi, 2021. "Reliability optimization for non-repairable series-parallel systems with a choice of redundancy strategies and heterogeneous components: Erlang time-to-failure distribution," Journal of Risk and Reliability, , vol. 235(3), pages 509-528, June.
    15. Ardakan, Mostafa Abouei & Amini, Hanieh & Juybari, Mohammad N., 2022. "Prescheduled switching time: A new strategy for systems with standby components," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    16. Anushri Maji & Asoke Kumar Bhunia & Shyamal Kumar Mondal, 2022. "A production-reliability-inventory model for a series-parallel system with mixed strategy considering shortage, warranty period, credit period in crisp and stochastic sense," OPSEARCH, Springer;Operational Research Society of India, vol. 59(3), pages 862-907, September.
    17. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2014. "Cold vs. hot standby mission operation cost minimization for 1-out-of-N systems," European Journal of Operational Research, Elsevier, vol. 234(1), pages 155-162.
    18. Abouei Ardakan, Mostafa & Rezvan, Mohammad Taghi, 2018. "Multi-objective optimization of reliability–redundancy allocation problem with cold-standby strategy using NSGA-II," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 225-238.
    19. Sharifi, Mani & Taghipour, Sharareh, 2024. "Redundancy allocation problem with a mix of components for a multi-state system and continuous performance level components," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    20. Levitin, Gregory & Xing, Liudong & Peng, Sun & Dai, Yuanshun, 2015. "Optimal choice of standby modes in 1-out-of-N system with respect to mission reliability and cost," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 587-596.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:238:y:2024:i:4:p:853-872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.