IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v179y2007i1p186-202.html
   My bibliography  Save this article

Multiperiod portfolio optimization models in stochastic markets using the mean-variance approach

Author

Listed:
  • Celikyurt, U.
  • Ozekici, S.

Abstract

No abstract is available for this item.

Suggested Citation

  • Celikyurt, U. & Ozekici, S., 2007. "Multiperiod portfolio optimization models in stochastic markets using the mean-variance approach," European Journal of Operational Research, Elsevier, vol. 179(1), pages 186-202, May.
  • Handle: RePEc:eee:ejores:v:179:y:2007:i:1:p:186-202
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(06)00174-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. U. Çakmak & S. Özekici, 2006. "Portfolio optimization in stochastic markets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(1), pages 151-168, February.
    2. Thaleia Zariphopoulou, 2001. "A solution approach to valuation with unhedgeable risks," Finance and Stochastics, Springer, vol. 5(1), pages 61-82.
    3. Lester G. Telser, 1955. "Safety First and Hedging," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 23(1), pages 1-16.
    4. Tomasz Bielecki & Daniel Hernández-Hernández & Stanley R. Pliska, 1999. "Risk sensitive control of finite state Markov chains in discrete time, with applications to portfolio management," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 50(2), pages 167-188, October.
    5. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    6. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    7. Hakansson, Nils H & Liu, Tien-Ching, 1970. "Optimal Growth Portfolios When Yields Are Serially Correlated," The Review of Economics and Statistics, MIT Press, vol. 52(4), pages 385-394, November.
    8. Lukasz Stettner, 1999. "Risk sensitive portfolio optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 50(3), pages 463-474, December.
    9. Pyle, David H & Turnovsky, Stephen J, 1970. "Safety-First and Expected Utility Maximization in Mean-Standard Deviation Portfolio Analysis," The Review of Economics and Statistics, MIT Press, vol. 52(1), pages 75-81, February.
    10. Gordon Pye, 1966. "A Markov Model of the Term Structure," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 80(1), pages 60-72.
    11. Haque, Mahfuzul & Kabir Hassan, M. & Varela, Oscar, 2004. "Safety-first portfolio optimization for US investors in emerging global, Asian and Latin American markets," Pacific-Basin Finance Journal, Elsevier, vol. 12(1), pages 91-116, January.
    12. Merton, Robert C., 1972. "An Analytic Derivation of the Efficient Portfolio Frontier," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(4), pages 1851-1872, September.
    13. Robert J. Elliott & Rogemar S. Mamon, 2003. "A Complete Yield Curve Description Of A Markov Interest Rate Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 317-326.
    14. Levy, Haim & Sarnat, Marshall, 1972. "Safety First — An Expected Utility Principle," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(3), pages 1829-1834, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shubhangi Sikaria & Rituparna Sen & Neelesh S. Upadhye, 2019. "Bayesian Filtering for Multi-period Mean-Variance Portfolio Selection," Papers 1911.07526, arXiv.org, revised Aug 2020.
    2. Chen, Yu-Wang & Poon, Ser-Huang & Yang, Jian-Bo & Xu, Dong-Ling & Zhang, Dongxu & Acomb, Simon, 2012. "Belief rule-based system for portfolio optimisation with nonlinear cash-flows and constraints," European Journal of Operational Research, Elsevier, vol. 223(3), pages 775-784.
    3. Buckley, Winston & Long, Hongwei & Marshall, Mario, 2016. "Numerical approximations of optimal portfolios in mispriced asymmetric Lévy markets," European Journal of Operational Research, Elsevier, vol. 252(2), pages 676-686.
    4. Reza Keykhaei, 2020. "Portfolio selection in a regime switching market with a bankruptcy state and an uncertain exit-time: multi-period mean–variance formulation," Operational Research, Springer, vol. 20(3), pages 1231-1254, September.
    5. Huiling Wu, 2016. "Optimal Investment-Consumption Strategy under Inflation in a Markovian Regime-Switching Market," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-17, July.
    6. Chunhui Xu & Yinyu Ye, 2024. "Optimization of Asset Allocation and Liquidation Time in Investment Decisions with VaR as a Risk Measure," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 551-577, July.
    7. Helu Xiao & Tiantian Ren & Zhongbao Zhou, 2019. "Time-Consistent Strategies for the Generalized Multiperiod Mean-Variance Portfolio Optimization Considering Benchmark Orientation," Mathematics, MDPI, vol. 7(8), pages 1-26, August.
    8. Farzan Soleymani & Eric Paquet, 2021. "Deep Graph Convolutional Reinforcement Learning for Financial Portfolio Management -- DeepPocket," Papers 2105.08664, arXiv.org.
    9. Azizipanah-Abarghooee, Rasoul & Niknam, Taher & Bina, Mohammad Amin & Zare, Mohsen, 2015. "Coordination of combined heat and power-thermal-wind-photovoltaic units in economic load dispatch using chance-constrained and jointly distributed random variables methods," Energy, Elsevier, vol. 79(C), pages 50-67.
    10. Jain, Prachi & Maitra, Debasish & Kang, Sang Hoon, 2023. "Oil price and the automobile industry: Dynamic connectedness and portfolio implications with downside risk," Energy Economics, Elsevier, vol. 119(C).
    11. Taras Bodnar & Nestor Parolya & Wolfgang Schmid, 2015. "A closed-form solution of the multi-period portfolio choice problem for a quadratic utility function," Annals of Operations Research, Springer, vol. 229(1), pages 121-158, June.
    12. Yao, Haixiang & Li, Danping & Wu, Huiling, 2022. "Dynamic trading with uncertain exit time and transaction costs in a general Markov market," International Review of Financial Analysis, Elsevier, vol. 84(C).
    13. Zeng, Yan & Li, Zhongfei & Lai, Yongzeng, 2013. "Time-consistent investment and reinsurance strategies for mean–variance insurers with jumps," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 498-507.
    14. Buckley, Winston S. & Brown, Garfield O. & Marshall, Mario, 2012. "A mispricing model of stocks under asymmetric information," European Journal of Operational Research, Elsevier, vol. 221(3), pages 584-592.
    15. Xiangyu Cui & Xun Li & Duan Li, 2013. "Unified Framework of Mean-Field Formulations for Optimal Multi-period Mean-Variance Portfolio Selection," Papers 1303.1064, arXiv.org.
    16. Akhter Mohiuddin Rather & V. N. Sastry & Arun Agarwal, 2017. "Stock market prediction and Portfolio selection models: a survey," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 558-579, September.
    17. Buckley, Winston S. & Long, Hongwei, 2015. "A discontinuous mispricing model under asymmetric information," European Journal of Operational Research, Elsevier, vol. 243(3), pages 944-955.
    18. Yao, Haixiang & Zeng, Yan & Chen, Shumin, 2013. "Multi-period mean–variance asset–liability management with uncontrolled cash flow and uncertain time-horizon," Economic Modelling, Elsevier, vol. 30(C), pages 492-500.
    19. Zhang, Wei-Guo & Liu, Yong-Jun & Xu, Wei-Jun, 2012. "A possibilistic mean-semivariance-entropy model for multi-period portfolio selection with transaction costs," European Journal of Operational Research, Elsevier, vol. 222(2), pages 341-349.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ethem Çanakoğlu & Süleyman Özekici, 2009. "Portfolio selection in stochastic markets with exponential utility functions," Annals of Operations Research, Springer, vol. 166(1), pages 281-297, February.
    2. U. Çakmak & S. Özekici, 2006. "Portfolio optimization in stochastic markets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(1), pages 151-168, February.
    3. Çanakoglu, Ethem & Özekici, Süleyman, 2010. "Portfolio selection in stochastic markets with HARA utility functions," European Journal of Operational Research, Elsevier, vol. 201(2), pages 520-536, March.
    4. Haim Levy, 2010. "The CAPM is Alive and Well: A Review and Synthesis," European Financial Management, European Financial Management Association, vol. 16(1), pages 43-71, January.
    5. Wu, Huiling & Chen, Hua, 2015. "Nash equilibrium strategy for a multi-period mean–variance portfolio selection problem with regime switching," Economic Modelling, Elsevier, vol. 46(C), pages 79-90.
    6. Fu, Chenpeng & Lari-Lavassani, Ali & Li, Xun, 2010. "Dynamic mean-variance portfolio selection with borrowing constraint," European Journal of Operational Research, Elsevier, vol. 200(1), pages 312-319, January.
    7. Wu, Huiling & Li, Zhongfei, 2012. "Multi-period mean–variance portfolio selection with regime switching and a stochastic cash flow," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 371-384.
    8. Jianfeng Liang & Shuzhong Zhang & Duan Li, 2008. "Optioned Portfolio Selection: Models And Analysis," Mathematical Finance, Wiley Blackwell, vol. 18(4), pages 569-593, October.
    9. René Ferland & François Watier, 2010. "Mean–variance efficiency with extended CIR interest rates," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(1), pages 71-84, January.
    10. Baptista, Alexandre M., 2012. "Portfolio selection with mental accounts and background risk," Journal of Banking & Finance, Elsevier, vol. 36(4), pages 968-980.
    11. Nakano Yumiharu, 2006. "Mean-risk optimization for index tracking," Statistics & Risk Modeling, De Gruyter, vol. 24(1/2006), pages 1-19, July.
    12. Guo, Sini & Yu, Lean & Li, Xiang & Kar, Samarjit, 2016. "Fuzzy multi-period portfolio selection with different investment horizons," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1026-1035.
    13. Pfiffelmann, Marie & Roger, Tristan & Bourachnikova, Olga, 2016. "When Behavioral Portfolio Theory meets Markowitz theory," Economic Modelling, Elsevier, vol. 53(C), pages 419-435.
    14. Zhang, Ling & Zhang, Hao & Yao, Haixiang, 2018. "Optimal investment management for a defined contribution pension fund under imperfect information," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 210-224.
    15. Yam, Sheung Chi Phillip & Yang, Hailiang & Yuen, Fei Lung, 2016. "Optimal asset allocation: Risk and information uncertainty," European Journal of Operational Research, Elsevier, vol. 251(2), pages 554-561.
    16. Xu, Liang & Gao, Chunyan & Kou, Gang & Liu, Qinjun, 2017. "Comonotonic approximation to periodic investment problems under stochastic drift," European Journal of Operational Research, Elsevier, vol. 262(1), pages 251-261.
    17. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2013. "On the equivalence of quadratic optimization problems commonly used in portfolio theory," European Journal of Operational Research, Elsevier, vol. 229(3), pages 637-644.
    18. Chun Hung Chiu & Xun Yu Zhou, 2011. "The premium of dynamic trading," Quantitative Finance, Taylor & Francis Journals, vol. 11(1), pages 115-123.
    19. Wang, Zengwu & Xia, Jianming & Zhang, Lihong, 2007. "Optimal investment for an insurer: The martingale approach," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 322-334, March.
    20. Chen, Zhiping & Li, Gang & Zhao, Yonggan, 2014. "Time-consistent investment policies in Markovian markets: A case of mean–variance analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 293-316.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:179:y:2007:i:1:p:186-202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.